Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Физический уровень стандарта IEEE 802.11g




 

Стандарт IEEE 802.11g по сути, представляет собой перенесение схемы модуляции OFDM, прекрасно зарекомендовавшей себя в 802.11а, из диапазона 5 ГГц в область 2,4 ГГц при сохранении функциональности устройств стандарта 802.11b. Это возможно, поскольку в стандартах 802.11 ширина одного канала в диапазонах 2,4 и 5 ГГц схожа — 22 МГц по уровню -30 и -20 дБ, соответственно. По уровню -28 дБ маска канала в 802.11а допускает спектральную полосу шириной 40 МГц.

Одним из основных требований к спецификации 802.11g была обратная совместимость с устройствами 802.11b. Это требование привело к очередному столкновению интересов компаний Intersil и TI. Действительно, в стандарте 802.11b в качестве основного способа модуляции принята схема ССК (Complementary Code Keying), а в качестве дополнительной возможности допускается модуляция PBSS. В последней крайне заинтересована компания TI. Разработчики 802.11g предусмотрели ССК-модуляцию для скоростей до 11 Мбит/с и OFDM для более высоких скоростей. С этим были согласны все. Но сети стандарта 802.11 при работе используют принцип CSMA/CA — множественный доступ к каналу связи с контролем несущей и предотвращением коллизий. Ни одно устройство 802.11 не должно начинать передачу, пока не убедится, что эфир в его диапазоне свободен от других устройств. Если в зоне слышимости окажутся устройства 802.11b и 802.11g, причем обмен будет происходить между устройствами 802.11g посредством OFDM, то оборудование 802.11b просто не поймет, что другие устройства сети ведут передачу, и попытается начать трансляцию. Последствия очевидны.

Чтобы подобную ситуацию не допустить, предусмотрена возможность работы в смешанном режиме — CCK-OFDM. Информация в сетях 802.11 передается кадрами. Каждый информационный кадр включает два основных поля: преамбулу с заголовком и информационное поле (рисунок 2.20).

 

 

Рисунок 2.20 - Кадры IEEE 802.11g в различных режимах модуляции

 

Преамбула содержит синхропоследовательность и код начала кадра, заголовок - служебную информацию, в том числе о типе модуляции, скорости и продолжительности передачи кадра. В режиме CCK-OFDM преамбула и заголовок модулируются методом ССК (реально — путем прямого расширения спектра DSSS посредством последовательности Баркера, поэтому в стандарте 802.11g этот режим именуется DSSS-OFDM), а информационное поле — методом OFDM. Таким образом, все устройства 802.11b, постоянно «прослушивающие» эфир, принимают заголовки кадров и узнают, сколько времени будет транслироваться кадр 802.11g. В этот период они «молчат». Естественно, пропускная способность сети падает, поскольку скорость передачи преамбулы и заголовка — 1 Мбит/с.

Видимо, данный подход не устраивал лагерь сторонников технологии PBSS, и для достижения компромисса в стандарт 802.11g в качестве дополнительной возможности ввели, так же как и в 802.11b, необязательный режим — PBSS, в котором заголовок и преамбула передаются так же, как и при ССК, а информационное поле модулируется по схеме PBSS и передается на скорости 22 или 33 Мбит/с. В результате устройства стандарта 802.11g должны оказаться совместимыми со всеми модификациями оборудования 802.11b и не создавать взаимных помех. Диапазон поддерживаемых им скоростей отражен в таблице 2.6, зависимость скорости от типа модуляции — на рисунке 2.21.

 

Т а б л и ц а 2.6 - Возможные скорости и тип модуляции в спецификации IEEE 802. 11g

Скорость, Мбит/с Тип модуляции
Обязательно Допустимо
  Последовательность Баркера  
  Последовательность Баркера  
5,5 CCK РВСС
  OFDM CCK-OFDM
    OFDM, CCK-OFDM
  CCK РВСС
  OFDM CCK-OFDM
    OFDM, CCK-OFDM
    РВСС
  OFDM CCK-OFDM
    РВСС
    OFDM, CCK-OFDM
    OFDM, CCK-OFDM
    OFDM, CCK-OFDM

 

Очевидно, что устройствам стандарта IEEE 802.11g достаточно долго придется работать в одних сетях с оборудованием 802.11b. Также очевидно, что производители в массе своей не будут поддерживать режимы CCK-OFDM и PBSS в силу их необязательности, ведь почти все решает цена устройства. Поэтому одна из основных проблем нового стандарта — как обеспечить бесконфликтную работу смешанных сетей 802.11b/g.

Основной принцип работы в сетях 802.11 — «слушать, прежде чем вещать». Но устройства 802.11b не способны услышать устройства 802.11g в OFDM-режиме. Ситуация аналогична проблеме скрытых станций: два устрой-

 

Рисунок 2.21 - Зависимость скорости передачи от расстояния для различных технологий передачи. Расстояние приведено в процентах, 100% — дальность передачи с модуляцией ССК на скорости 11 Мбит/с

 

ства удалены настолько, что не слышат друг друга и пытаются обратиться к третьему, которое находится в зоне слышимости обоих. Для предотвращения конфликтов в подобной ситуации в 802.11 введен защитный механизм, предусматривающий перед началом информационного обмена передачу короткого кадра «запрос на передачу» (RTS) и получение кадра подтверждения «можно передавать» (CTS). Механизм RTS/CTS применим и к смешанным сетям 802.11b/g. Естественно, эти кадры должны транслироваться в режиме ССК, который обязаны понимать все устройства. Однако защитный механизм существенно снижает пропускную способность сети. Так, при физической скорости 54 Мбит/с потолок пропускной способности гомогенной сети 802.11g (с учетом всей служебной и управляющей информации) около 32 Мбит/с, а реальные показатели оборудования — на уровне 24 Мбит/с. Если же сеть смешанная, то защитный механизм RTS/CTS понизит пропускную способность до 12 Мбит/с. Это практически вдвое превышает пропускную способность однородной сети 802.11b (~6 Мбит/с), но ведь всегда хочется большего. Поэтому вместо механизма RTS/CTS можно использовать только кадры CTS, предшествующие каждому OFDM-кадру. В результате пропускная способность несколько повысится — до 14,5 Мбит/с. Однако этот механизм неприемлем, если не все устройства сети находятся в зоне слышимости друг друга (пресловутая проблема «скрытой точки»).

Видимо, поэтому производители ИС для сетей 802.11 разрабатывают специальные механизмы, способные в рамках действующих стандартов повысить скорость передачи. Так, компания Atheros для стандартов 802.11а и g предложила так называемый режим Turbo Mode, позволяющий удвоить номинальную скорость до 108 Мбит/с за счет передачи информации одновременно по двум каналам. Для поддержки Turbo Mode компания выпустила специальный чипсет AR5001X+, отличающийся от AR5001X модифицированным процессором AR5212.

Корпорация Intersil пошла другим путем. Она представила свою технологию PRISM Nitro, включающую два основных элемента: защитный механизм и групповую передачу OFDM-кадров. Защитный механизм не содержит ничего принципиально нового и подразумевает передачу перед каждым OFDM-кадром кадра CTS. Intersil ратует за введение этого средства защиты в спецификацию 802.11g в качестве обязательного элемента. Групповая же передача OFDM-кадров способна, по мнению специалистов компании, существенно повысить пропускную способность как смешанной 802.11b/g сети, так и однородной.

В таблице 2.7 представлена сводная информация по параметрам физических уровней.

 

Т а б л и ц е 2.7 - Стандарты физического уровня

Параметр 802.11 DSSS 802.11 FHSS 802.11b 802.11а 802.11g
Частотный диапазон (ГГц) 2,4 2,4 2,4   2,4
Максимальная скорость передачи данных (Мбит/c)          
Технология DSSS FHSS CCK OFDM OFDM
Тип модуляции (для максимальной скорости передачи) QPSK GFSK QPSK 64-QAM 64-QAM
Число неперекрывающихся каналов          

 

 

Антенны

 

Антенну можно определить как проводник, используемый для излучения или улавливания электромагнитной энергии из пространства. Для передачи сигнала радиочастотные электрические импульсы передатчика с помощью антенны преобразуются в электромагнитную энергию, которая излучается в окружающее пространство. При получении сигнала энергия электромагнитных волн, поступающих на антенну, преобразуется в радиочастотные электрические импульсы, после чего подаётся на приёмник [2, 3].

Как правило, при двусторонней связи одна и та же антенна может быть использована как для приёма, так и для передачи сигнала. Такой подход возможен, потому что любая антенна с равной эффективностью поставляет энергию из окружающей среды к принимающим терминалам и от передающих терминалов в окружающую среду.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 780 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лаской почти всегда добьешься больше, чем грубой силой. © Неизвестно
==> читать все изречения...

2347 - | 2206 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.