.


:




:

































 

 

 

 


I.




1. " ". - ( ). 1995 "" [143]; : ", , ". , , , . - " ", .

). . , . , , . " " [27]. ( ), , , , (), - . - , ( , ). ( ). , , [217]. . . , , , [41]. (), , . . : , de novo , -, . , , , , [43,109,216].

, . , G-3, , . , [188]. , , - , [174]. 2 [131]. 3 [125]. , NMDA-. ?-. , "" [90].

) , . , "" . , . , , , [210]. , - - , . ( ) ( ) , - . . . , - [84].

. 70 , - 5 ( ). , 12 [212]. , , H2O2. 1 : 20 [86]. . , , , Y , [34].

, , . , (NGF), (BDNF) (GDNF), (bFGF) [191,198,231]. . BDNF GDNF ; [37].

2. . . , , , .

) . , , . , ( ) , , , , , . .. , ("") , , . [7]. [8,18,186].

- . [205], ( ) [52]. , [304]. , NMDA-, -, , , , [126,150], NMDA- ( ) [62].

. , ( ) [160], [171]. [261,307].

, , . , , , , , [169,254,263,292]. , (, , ) [259,293,300]. , [184]: " , ".

) . , , . - , . , , (, ), [180,239]. , TrkB [296]. , BDNF NMDA , ( 489%) ( 20520%) , ; NMDA- BDNF, -NMDA . TrkB , ( TrkB ) [165,166,168,249]. , BDNF - ; Trk- [104,264]. AMPA- 4/5 (N 4/5) [164] (NGF) [148]. NGF , , , / [23,189]. NGF Trk- ( , 75) on- [235,281]. , . () (Trk B C), 6-24 - BDNF NT-3 NMDA- [49]. BDNF TrkB . BDNF [22,101]. NGF [230].

BDNF , , [142]. , , fFGF, bFGF NGF [25,276].

3." " - .

1948 " " - , . - (tight junctions) , . . , , - , () [. 9]. , , , , . , " ", , [115,268]. - . II, ; , . . , .

) . , , , , , . , (, ) , (), [76,100,221,229]. , , - , , , . - , , . , , , , - . ; " ", , ?- IL-10 [10,221,229,286, 294].

, , - . TGF-ß2 ( ), . 6- (6) , , [92]. (, , ) I . . , . , I, , [75]. , , [68,156,266]. - LAMP (limbic system associated membrane protein); , [214]. , , , .

) . , , , , " " [33,79,158]. , , . , ( 1, 3, 6,?-) [40,113,151]. , .

, , , ( , 1?, 2, 6) . , 1? : 1) , , [179,193]; A-, 2-3 [305]; 3) [219]; 4) [207]; 5) , [250]. IL-1β , 6 2. , , (, ) [81,196].

(, ) [99,204]. ; , [29,112]. , , , , [28,240,298].

, , , , [82,295]. (1? 6) [39,80,83,167]. 1? 60 [201]. , -2 [211], -6 , [44].

, [14,107]. , , , .

 

- , , , , , /, - . , . , , , . , , - , , , . , , . , - , - . , , , , , , , (, ), . , , , , . , , , . . , , - - .

, , . , , , -, , , . - "" . , . , , .

, , . , , . .

, , , . , " " - , - () . , , , .

, - . , , .

, - , , , , , . , . - , , , , .

, , . , , , , . - , , . , , . , . . , , " " " ". : " , ?" - , - - - - () - () . ; . , , . , .

(N 99-04-48281, N 15-98-035).


 

. , . , , . . , , . . , , .

. ; ; . , . , , - , . , , , . , . , , . , , , , . .


NEUROSCIENCE AT THE END OF THE SECOND MILLENNIUM:

CHANGE OF PARADIGMS

O.S.Vinogradova

Institute of Theoretic and Experimental Biophysics

 

The new neuroscience data, rapidly accumulating by the end of the second millenium, demand radical revision of many long-established and widely accepted postulates. This paper shortly reviews some data leading to the new concepts of life and work of the neurons. The adult brain contains stem cells which are the source of the precursors for all main types of the brain cells - neurons, astrocytes and oligodendroglia. These cells can substitute the detriorating elements in the adult and even old brain. The neurons occur to be highly resistant to lesion of their processes, as well as to anoxia, and inhibitory neurons are shown to be especially stable in some pathological conditions. Changes of the afferent inputs result in various types of rapid compensatory morphological and functional reorganizations at different levels. Thus, the previous fatalistic view of the nervous system is substituted now by an optimistic one, regarding various possibilities of prolongation and restoration of normal functioning of the brain.

Simultaneously our concepts of the neuron are drastically changed. The unitary neuron may operate by several neurotransmitting substances; their synaptic influences upon the dendrites may evoke active propagation of calcium and sodium spikes, their axons, depending on parameters of excitation, may differentially release transmitter substances. All neuronal functions are helped and controlled by astroglia, which participates in synthesis of transmitters and protects the neurons from excitotoxic death.

Besides the synaptic interactions between the neurons there exist other types of communications, such as volume conduction of transmitters after their spillover from the excited synapses and non-synaptic (varicose) zones, as well as exchange of molecules and ions through the gap junctions. The complex picture of interneuronal communications with multiple synaptic, presynaptic and parasynaptic interactions is further complicated by intimate participation of neurotrophic substances and mediators of the immune system cytokines in these processes. The mutual regulatory influences between neurotransmitters, neurotrophic and neuroimmune systems show that in normal conditions all they are working in concert. This increase in number of factors, determining the final result of interaction between the neurons contributes new difficulties to the development of the theoretical concepts or simulation of the brain functions. In this context it is possible to speak about a certain crisis of theoretical neurobiology at present, because multiplicity of the fine details obtained by molecular neurobiology and neurogenetics can't be integrated in coherent view of the brain functions. Overcoming the present gap between analytic and synthetic approaches to understanding the brain work will be the main aim for the neurobiologists of the third millennium.





:


: 2016-11-18; !; : 429 |


:

:

, .
==> ...

1591 - | 1386 -


© 2015-2024 lektsii.org - -

: 0.04 .