Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


На тему: Развитие компьютерной техники Вычислительная техника

 

По дисциплине: Информатика

Студента группы


Филатова Олега

 

07.09.16

Вычислительная техника является важнейшим компонентом процесса вычислений и обработки данных.

Первыми приспособлениями для вычислений были, вероятно, всем известные счетные палочки, которые и сегодня используются в начальных классах многих школ для обучения счету. Развиваясь, эти приспособления становились более сложными.

Человечество научилось пользоваться простейшими счетными приспособлениями тысячи лет назад.

Наиболее востребованной оказалась необходимость определять количество предметов, используемых в меновой торговле.

Одним из самых простых решений было использование весового эквивалента меняемого предмета, что не требовало точного пересчета количества его составляющих.

Для этих целей использовались простейшие балансирные весы, которые стали, таким образом, одним из первых устройств для количественного определения массы.

Принцип эквивалентности широко использовался и в другом, знакомым для многих, простейшем счетном устройстве - абаке или счетах.

Количество подсчитываемых предметов соответствовало числу передвинутых костяшек этого инструмента.

Сравнительно сложным приспособлением для счета могли быть четки, применяемые в практике многих религий. Верующий как на счетах отсчитывал на зернах четок число произнесенных молитв, а при проходе полного круга четок передвигал на отдельном хвостике особые зерна-счетчики, означающие число отсчитанных кругов.

С изобретением зубчатых колес появились и гораздо более сложные устройства выполнения расчетов.

Антикитерский механизм, обнаруженный в начале XX века, который был найден на месте крушения античного судна, затонувшего примерно в 65 (по другим источникам в 80 или даже 87) году до нашей эры, даже умел моделировать движение планет.

Предположительно его использовали для календарных вычислений в религиозных целях, предсказания солнечных и лунных затмений, определения времени посева и сбора урожая и тому подобное

Вычисления выполнялись за счет соединения более тридцати бронзовых колес и нескольких циферблатов; для вычисления лунных фаз использовалась дифференциальная передача, изобретение которой исследователи долгое время относили не ранее чем к 16 веку.

Впрочем, с уходом античности навыки создания таких устройств были позабыты; потребовалось около полутора тысяч лет, чтобы люди вновь научились создавать похожие по сложности механизмы.

В 1623 году Вильгельм Шикард придумал «Считающие часы» - первый механический калькулятор, умевший выполнять четыре арифметических действия. Считающими часами устройство было названо потому, что как и в настоящих часах работа механизма была основана на использовании звездочек и шестеренок.

Практическое использование это изобретение нашло в руках друга Шикарда, философа и астронома Иоганна Кеплера.

За этим последовали машины Блеза Паскаля («Паскалина», 1642 год) и Готфрида Вильгельма Лейбница.

Примерно в 1820 году Charles Xavier Thomas создал первый удачный, серийно выпускаемый механический калькулятор - Арифмометр Томаса, который мог складывать, вычитать, умножать и делить. В основном, он был основан на работе Лейбница.

Механические калькуляторы, считающие десятичные числа, использовались до 1970 годах.

Лейбниц также описал двоичную систему счисления, центральный ингредиент всех современных компьютеров.

Однако вплоть до 1940 годах, многие последующие разработки (включая машины Чарльза Бэббиджа и даже ЭНИАК 1945 года) были основаны на более сложной в реализации десятичной системе.

Джон Непер заметил, что умножение и деление чисел может быть выполнено сложением и вычитанием, соответственно, логарифмов этих чисел. Действительные числа могут быть представлены интервалами длины на линейке, и это легло в основу вычислений с помощью логарифмической линейки, что позволило выполнять умножение и деление намного быстрее.

Логарифмические линейки использовались несколькими поколениями инженеров и других профессионалов, вплоть до появления карманных калькуляторов.

Инженеры программы «Аполлон» отправили человека на Луну, выполнив на логарифмических линейках все вычисления, многие из которых требовали точности в 3-4 знака.

В 1801 году Жозеф Мари Жаккар разработал ткацкий станок, в котором вышиваемый узор определялся перфокартами.

Серия карт могла быть заменена, и смена узора не требовала изменений в механике станка. Это было важной вехой в истории программирования.

В 1838 году Чарльз Бэббидж перешел от разработки Разностной машины к проектированию более сложной аналитической машины, принципы программирования которой напрямую восходят к перфокартам Жаккара.

В 1890 году Бюро Переписи США использовало перфокарты и механизмы сортировки, разработанные Германом Холлеритом, чтобы обработать поток данных десятилетней переписи, переданный под мандат в соответствии с Конституцией.

Компания Холлерита в конечном счете стала ядром IBM. Эта корпорация развила технологию перфокарт в мощный инструмент для деловой обработки данных и выпустила обширную линию специализированного оборудования для их записи.

К 1950 году технология IBM стала вездесущей в промышленности и правительстве. Предупреждение, напечатанное на большинстве карт, «не сворачивать, не скручивать и не рвать», стало девизом послевоенной эры.

В 1835 году Чарльз Бэббидж описал свою аналитическую машину. Это был проект компьютера общего назначения, с применением перфокарт в качестве носителя входных данных и программы, а также парового двигателя в качестве источника энергии. Одной из ключевых идей было использование шестерней для выполнения математических функций.

Часть Разностной машины Бэббиджа, собранная после его смерти сыном из частей, найденных в лаборатории.Его первоначальной идеей было использование перфокарт для машины, вычисляющей и печатающей логарифмические таблицы с большой точностью (то есть, для специализированной машины).

В дальнейшем эти идеи были развиты до машины общего назначения - его «аналитической машины». Хотя планы были озвучены и проект, по всей видимости, был реален или, по крайней мере, проверяем, при создании машины возникли определенные трудности. Бэббидж был человеком, с которым трудно было работать, он спорил с каждым, кто не отдавал дань уважения его идеям. Все части машины должны были создаваться вручную. Небольшие ошибки в каждой детали, для машины, состоящей из тысяч деталей, могли вылиться в значительные отклонения, поэтому при создании деталей требовалась точность, необычная для того времени. В результате, проект захлебнулся в разногласиях с исполнителем, создающим детали, и завершился с прекращением государственного финансирования.

Ада Лавлейс, дочь лорда Байрона, перевела и дополнила комментариями труд «Sketch of the Analytical Engine». Ее имя часто ассоциируют с именем Бэббиджа. Утверждается также, что она является первым программистом, хотя это утверждение и значение ее вклада многими оспаривается.

Реконструкция 2-го варианта «Разностной машины» - раннего, более ограниченного проекта, действует в Лондонском музее науки с 1991 года. Она работает именно так, как было спроектировано Бэббиджем, лишь с небольшими тривиальными изменениями, и это показывает что Бэббидж в теории был прав.

Для создания необходимых частей, музей применил машины с компьютерным управлением, придерживаясь допусков, которые мог достичь слесарь того времени. Некоторые полагают, что технология того времени не позволяла создать детали с требуемой точностью, но это предположение оказалось неверным. Неудача Бэббиджа при конструировании машины, в основном, приписывается трудностям, не только политическим и финансовым, но и его желанию создать очень изощренный и сложный компьютер.

К 1900-у году ранние механические калькуляторы, кассовые аппараты и счетные машины были перепроектированы с использованием электрических двигателей с представлением положения переменной как позиции шестерни.

С 1930 годах, такие компании как Friden, Marchant и Monro начали выпускать настольные механические калькуляторы, которые могли складывать, вычитать, умножать и делить.

Словом «computer» (буквально - «вычислитель») называлась должность - это были люди, которые использовали калькуляторы для выполнения математических вычислений.

В ходе Манхэттенского проекта, будущий Нобелевский лауреат Ричард Фейнман был управляющим целой команды «вычислителей», многие из которых были женщинами-математиками, обрабатывающими дифференциальные уравнения, которые решались для военных нужд.

Даже знаменитый Станислав Мартин Улам уже после окончания войны был принужден к работе по переводу математических выражений в разрешимые приближения - для проекта водородной бомбы.

Первым полностью электронным настольным калькулятором был британский ANITA Мк.VII, который использовал дисплей на трубках «Nixie» и 177 миниатюрных тиратроновых трубок.

В июне 1963 года Friden представил EC-130 с четырьмя функциями. Он был полностью на транзисторах, имел 13-цифровое разрешение на 5-дюймовой электронно-лучевой трубке, и представлялся фирмой RPN на рынке калькуляторов по цене 2200 $. В модель EC 132 были добавлены функция вычисления квадратного корня и обратные функции.

В 1965 году Wang Laboratories произвел LOCI-2, настольный калькулятор на транзисторах с 10 цифрами, который использовал дисплей на ЭЛТ Nixie и мог вычислять логарифмы.

В 1936 году, работая в изоляции в нацистской Германии, Конрад Цузе начал работу над своим первым вычислителем серии Z, имеющим память и (пока ограниченную) возможность программирования.

Созданная, в основном, на механической основе, но уже на базе двоичной логики, модель Z1, завершенная в 1938 году, так и не заработала достаточно надежно, из-за недостаточной точности выполнения составных частей.

Следующая машина Цузе - Z3, была завершена в 1941 году. Она была построена на телефонных реле и работала вполне удовлетворительно. Тем самым, Z3 стала первым работающим компьютером, управляемым программой. Во многих отношениях Z3 была подобна современным машинам, в ней впервые был представлен ряд новшеств, таких как арифметика с плавающей запятой.

Замена сложной в реализации десятичной системы на двоичную, сделала машины Цузе более простыми и, а значит, более надежными; считается, что это одна из причин того, что Цузе преуспел там, где Бэббидж потерпел неудачу. Программы для Z3 хранились на перфорированной пленке.

Условные переходы отсутствовали, но в 1990-х было теоретически доказано, что Z3 является универсальным компьютером (если игнорировать ограничения на размер физической памяти).

В двух патентах 1936 года, Конрад Цузе упоминал, что машинные команды могут храниться в той же памяти что и данные - предугадав тем самым то, что позже стало известно как архитектура фон Неймана и было впервые реализовано только в 1949 году в британском EDSAC.

Американский ENIAC, который часто называют первым электронным компьютером общего назначения, публично доказал применимость электроники для масштабных вычислений. Это стало ключевым моментом в разработке вычислительных машин, прежде всего из-за огромного прироста в скорости вычислений, но также и по причине появившихся возможностей для миниатюризации.

Созданная под руководством Джона Мочли (John Mauchly) и Дж. Преспера Эккерта (J. Presper Eckert), эта машина была в 1000 раз быстрее, чем все другие машины того времени.

Разработка «ЭНИАК» продлилась с 1943 до 1945 года.

В то время, когда был предложен данный проект, многие исследователи были убеждены, что среди тысяч хрупких электровакуумных ламп многие будут сгорать настолько часто, что «ЭНИАК» будет слишком много времени простаивать в ремонте, и тем самым, будет практически бесполезен.

Тем не менее, на реальной машине удавалось выполнять несколько тысяч операций в секунду в течение нескольких часов, до очередного сбоя из-за сгоревшей лампы.

«ЭНИАК», безусловно, удовлетворяет требованию полноты по Тьюрингу. Но «программа» для этой машины определялась состоянием соединительных кабелей и переключателей - огромное отличие от машин с хранимой программой, появившихся позже.

Тем не менее, в то время, вычисления, выполняемые без помощи человека, рассматривались как достаточно большое достижение, и целью программы было тогда решение только одной единственной задачи. (Улучшения, которые были завершены в 1948 году, дали возможность исполнения программы, записанной в специальной памяти, что сделало программирование более систематичным, менее «одноразовым» достижением.)

Переработав идеи Эккерта и Мочли, а также, оценив ограничения «ЭНИАК», Джон фон Нейман написал широко цитируемый отчет, описывающий проект компьютера (EDVAC), в котором и программа, и данные хранятся в единой универсальной памяти.

Принципы построения этой машины стали известны под названием «архитектура фон Неймана» и послужили основой для разработки первых по-настоящему гибких, универсальных цифровых компьютеров.

Первой работающей машиной с архитектурой Фон Неймана стал манчестерский «Baby» - Small-Scale Experimental Machine, созданный в Манчестерском университете в 1948 году; в 1949 году за ним последовал компьютер Манчестерский Марк I, который уже был полной системой, с трубками Уильямса и магнитным барабаном в качестве памяти, а также с индексными регистрами.

Другим претендентом на звание «первый цифровой компьютер с хранимой программой» стал EDSAC, разработанный и сконструированный в Кембриджском университете. Заработавший менее чем через год после «Baby», он уже мог использоваться для решения реальных проблем.

На самом деле, EDSAC был создан на основе архитектуры компьютера EDVAC, наследника ENIAC. В отличие от ENIAC, использовавшего параллельную обработку, EDVAC располагал единственным обрабатывающим блоком. Такое решение было проще и надежнее, поэтому такой вариант становился первым реализованным после каждой очередной волны миниатюризации.

Многие считают, что Манчестерский Марк 1 / EDSAC / EDVAC стали «Евами», от которых ведут свою архитектуру почти все современные компьютеры.

Первый универсальный программируемый компьютер в континентальной Европе был создан командой ученых под руководством Сергея Алексеевича Лебедева из Киевского института электротехники (СССР, Украина).

ЭВМ МЭСМ (Малая электронная счетная машина) заработала в 1950 году. Она содержала около 6000 электровакуумных ламп и потребляла 15 кВт. Машина могла выполнять около 3000 операций в секунду.

Другой машиной того времени была австралийская CSIRAC, которая выполнила свою первую тестовую программу в 1949 году.

В июне 1951 года UNIVAC 1 был установлен в Бюро переписи населения США. Машина была разработана в компании Remington Rand, которая, в конечном итоге, продала 46 таких машин по цене более чем в 1 млн. $ за каждую.

UNIVAC был первым массово производимым компьютером; все его предшественники изготовлялись в единичном экземпляре.

Компьютер состоял из 5200 электровакуумных ламп, и потреблял 125 кВт энергии. Использовались ртутные линии задержки, хранящие 1000 слов памяти, каждое по 11 десятичных цифр плюс знак (72-битные слова).

В отличие от машин IBM, оснащаемых устройством ввода с перфокарт, UNIVAC использовал ввод с металлизированной магнитной ленты стиля 1930-х, благодаря чему обеспечивалась совместимость с некоторыми существующими коммерческими системами хранения данных. Другими компьютерами того времени использовался высокоскоростной ввод с перфоленты и ввод/вывод с использованием более современных магнитных лент.

В 1955 году Морис Уилкс изобретает микропрограммирование, принцип, который позднее широко используется в микропроцессорах самых различных компьютеров. Микропрограммирование позволяет определять или расширять базовый набор команд с помощью встроенных программ.

В 1956 году IBM впервые продает устройство для хранения информации на магнитных дисках - RAMAC (Random Access Method of Accounting and Control). Оно использует 50 металлических дисков диаметром 24 дюйма, по 100 дорожек с каждой стороны. Устройство хранило до 5 МБ данных и стоило по 10 000 $ за МБ. (В 2006 году, подобные устройства хранения данных - жесткие диски - стоят менее 0.001 $ за МБ.)

Следующим крупным шагом в истории компьютерной техники, стало изобретение транзистора в 1947 году.Они стали заменой хрупким и энергоемким лампам.

О компьютерах на транзисторах обычно говорят как о «втором поколении», которое доминировало в 1950-х и начале 1960-х.

Благодаря транзисторам и печатным платам, было достигнуто значительное уменьшение размеров и объемов потребляемой энергии, а также повышение надежности.

Например, IBM 1620 на транзисторах, ставшая заменой IBM 650 на лампах, была размером с офисный стол.

Однако компьютеры второго поколения по-прежнему были довольно дороги и поэтому использовались только университетами, правительствами, крупными корпорациями.

В 1959 году на основе транзисторов IBM выпустила мейнфрейм IBM 7090 и машину среднего класса IBM 1401. Последняя использовала перфокарточный ввод и стала самым популярным компьютером общего назначения того времени: было выпущено 12 тыс. экземпляров этой машины. В ней использовалась память на 4000 символов (позже увеличенная до 16 000 символов).

Многие аспекты этого проекта были основаны на желании заменить перфокарточные машины, которые широко использовались, начиная с 1920-х до самого начала 1970-х гг.

В 1960 году IBM выпустила транзисторную IBM 1620, изначально только перфоленточную, но вскоре обновленную до перфокарт. Модель стала популярна в качестве научного компьютера, было выпущено около 2000 экземпляров. В машине использовалась память на магнитных сердечниках объемом до 60 000 десятичных цифр.

В том же 1960 году DEC выпустила свою первую модель - PDP-1, предназначенную для использования техническим персоналом в лабораториях и для исследований.

В 1961 году Burroughs Corporation выпустила B5000, первый двухпроцессорный компьютер с виртуальной памятью. Другими уникальными особенностями были стековая архитектура, адресация на основе дескрипторов, и отсутствие программирования напрямую на языке ассемблера.

Бурный рост использования компьютеров начался с т. н. «3-им поколением» вычислительных машин.

Начало этому положило изобретение интегральных схем, которые независимо друг от друга изобрели лауреат Нобелевской премии Джек Килби и Роберт Нойс.

Позже это привело к изобретению микропроцессора Тэдом Хоффом (компания Intel).

В течение 1960-х наблюдалось определенное перекрытие технологий 2-го и 3-го поколений.

В конце 1975 года, в Sperry Univac продолжалось производство машин 2-го поколения, таких как UNIVAC 494.

Появление микропроцессоров привело к разработке микрокомпьютеров - небольших недорогих компьютеров, которыми могли владеть небольшие компании или отдельные люди.

Микрокомпьютеры, представители четвертого поколения, первые из которых появился в 1970-х, стали повсеместным явлением в 1980-х и позже.

Стив Возняк, один из основателей Apple Computer, стал известен как разработчик первого массового домашнего компьютера, а позже - первого персонального компьютера.

Компьютеры на основе микрокомпьютерной архитектуры, с возможностями, добавленными от их больших собратьев, сейчас доминируют в большинстве сегментов рынка.

 



<== предыдущая лекция | следующая лекция ==>
Exercise 1 comprehension questions | Основні поняття у галузі ліцензування та акредитації вищої освіти
Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 329 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

В моем словаре нет слова «невозможно». © Наполеон Бонапарт
==> читать все изречения...

2236 - | 2194 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.