Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


F.3 Gaseous absorption for a troposcatter path




This section gives the method for calculating gaseous absorption for a complete troposcatter path, from transmitter to receiver via the common scattering volume.

Use the method in § F.4, with hrho = hts, q elev = q tpos, dcv = dtcv, to give the gaseous attenuations due to oxygen, and for water vapour under both non-rain and rain conditions, for the transmitter/common-volume path, where hts, q tpos, and dtcv appear in Table 3.1. Save the values calculated by equations (F.4.3a) to (F.4.3c) according to:

dB (F.3.1a)

dB (F.3.1b)

dB (F.3.1c)

Use the method in section F.4, with hrho = hrs, q elev = q rpos, dcv = drcv to give the gaseous attenuations due to oxygen, and for water vapour under both non-rain and rain conditions, for the receiver/common-volume path, where hrs, q rpos, and drcv appear in Table 3.1. Save the values calculated by equations (F.4.3a) to (F.4.3c) according to:

dB (F.3.2a)

dB (F.3.2b)

dB (F.3.2c)

The gaseous attenuations due to oxygen and for water vapour under both non-rain and rain conditions, for the complete troposcatter path are now given by:

dB (F.3.3a)

dB (F.3.3b)

dB (F.3.3c)

F.4 Gaseous absorption for terminal/common-volume troposcatter path

This section gives the method for calculating gaseous attenuation under non-rain conditions for the path from one terminal to the common volume of a troposcatter path.

The inputs are height for water-vapour density hrho masl, elevation angle of path q elev mrad, and horizontal distance to the common volume dcv km.

The outputs are the attenuations due to oxygen, and due to water vapour under both non-rain and rain conditions, for the terminal/common-volume path, Ao, Aw and Awr, in dB.

Obtain surface water-vapour density r sur at the terminal from the data file “surfwv_50_fixed.txt”.

Use equation (F.6.2) to calculate the sea-level specific attenuation due to water vapour under non‑rain conditions, g w, dB/km.

Use equation (F.5.1) to calculate the surface water-vapour density under rain conditions, r surr, g/m−3.

Re-evaluate r sur according to r sur = r surr.

Use equation (F.6.2) to calculate the sea-level specific attenuation due to water vapour under rain conditions, g wr, dB/km.

Calculate the quantities do and dw for oxygen and water vapour:

(F.4.1a)

(F.4.1b)

Calculate the effective distances d e o and dew for oxygen and water vapour:

km (F.4.2a)

km (F.4.2b)

The attenuations due to oxygen, and for water vapour under both non-rain and rain conditions, for the terminal/common-volume path are now given by:

km (F.4.3a)

km (F.4.3b)

km (F.4.3c)

where g o, the sea-level specific attenuation due to oxygen, appears in Table 3.1.





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 390 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Либо вы управляете вашим днем, либо день управляет вами. © Джим Рон
==> читать все изречения...

2227 - | 1965 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.