Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Четвертый мозговой желудочек




Как уже говорилось (см. 4.2), IV желудочек представляет собой полость заднего мозга. Снизу этот желудочек переходит в спинномозговой канал, сверху — в водопровод среднего мозга. Его дно — ромбовидная ямка — образовано дорсальной поверхностью продолговатого мозга и моста.

Крыша имеет форму шатра и составлена мозговыми пару сами — верхним, натянутым между верхними ножками мозжечка, и двумя нижними, натянутыми между задними частями полушарий мозжечка и задними краями ромбовидной ямки. В нижнем и боковых углах ромбовидной ямки нижний мозговой парус отходит от ее краев, образуя 3 отверстия.

Ромбовидная ямка (см. рис. 24) разделена на две симметричные половины срединной бороздой. Между ее боковыми углами проходят мозговые полоски — волокна, идущие от правого дорсального слухового ядра к левому, и наоборот. Мозговые полоски являются границей между мостом и про долговатым мозгом. Как уже отмечалось (см. 7.2.1), на ромбовидную ямку проецируются ядра черепных нервов.

Основные зоны ромбовидной ямки:

1) треугольник подъязычного нерва — под ним лежит двигательное ядро этого нерва;

2) треугольник блуждающего нерва — под ним лежит вегетативное ядро этого нерва;

3) вестибулярное поле — в этой области расположены шесть чувствительных ядер вестибуло-слухового нерва;

4) лицевой бугорок — выпуклость, образованная волокнами лицевого нерва, огибающими лежащее ниже двигательное ядро отводящего нерва;

5) голубое пятно — под ним лежит ядро с тем же названием.

Чтобы понять расположение ядер в ромбовидной ямке, надо учитывать, что замкнутая нервная трубка при переходе от спинного к головному мозгу раскрывается на своей дорсальной стороне и развертывается в ромбовидную ямку. Вследствие этого задние рога серого вещества спинного мозга как бы расходятся в стороны. Заложенные в задних рогах соматически-чувствительные ядра располагаются в ямке латерально, а соответствующие передним рогам соматически-двигательные ядра остаются лежать медиально и несколько ниже. Вегетативные ядра находятся между ними.

В результате в ромбовидной ямке в отличие от спинного мозга ядра серого вещества расположены не в дорзовентральном направлении, а лежат скорее рядами — медиально и латерально.

Средний мозг

Средний мозг, mesencephalon, самый маленький отдел головного мозга, его длина примерно 2 см. Полость среднего мозга — мозговой (сильвиев) водопровод имеет диаметр около 1 мм. Из среднего мозга выходят две пары черепных нервов — глазодвигательный (III пара) и блоковый (IV пара). Напомним, что блоковой нерв выходит из мозга на дорсальной стороне, затем огибает ножки мозга и переходит на брюшную сторону.

На дорсальной стороне среднего мозга находится крыша, tectum, состоящая из двух пар бугорков — нижних и верхних холмиков четверохолмия (см. рис. 24). Они разделены взаимно перпендикулярными бороздами. Между верхними и нижними холмиками проходят комиссуры холмиков — воло кна, соединяющие правый и левый холмики. Кроме того, от каждого бугорка отходит ручка холмика — волокна, идущие в таламус.

На вентральной стороне расположены ножки мозга. Они выходят из моста, направляются вперед и, постепенно расходясь в стороны, погружаются в толщу больших полушарий (см. рис. 21). Между ножками лежит межножковая ямка, в дне которой есть множество мелких отверстий, через которые проходят кровеносные сосуды. Этот участок называется зад ним продырявленным веществом.

Ножки мозга разделены на покрышку, tegmentwn, и лежащее ниже основание, basis (рис. 26). Границей между ними служит черная субстанция (см. далее).

 
 

 

 


Рис. 26. Поперечный разрез через средний мозг

на уровне нижних холмиков:

Iкрыша мозга; IIпокрышка; IIIоснование;

1холмик четверохолмия; 2сильвиев водопровод;

3центральное серое вещество; 4красное ядро;

5— черная субстанция; 6межножковое ядро; 7ядро тройничного нерва; 8ядро блокового нерва

 


 

Крыша мозга состоит из серого вещества, основание — из белого (только нисходящие тракты), в покрышке среди волокон белого вещества лежат ядра серого вещества.

Крыша среднего мозга. Верхние холмики имеют слоистое строение (состоят из семи клеточных слоев), т.е. для них характерна корковая организация. Их афференты — в первую очередь, волокна зрительного тракта, а также спинно-тектальный тракт, нижние холмики, кора больших полушарий. Эфферентами являются волокна тектоспинального тракта, волокна, идущие к ядрам глазодвигательных нервов, а также ручки верхних холмиков.

Эти связи способствуют выполнению основной функции верхних холмиков — организации движений в ответ на новый раздражитель (поворот головы, глаз, ушных раковин в сторону стимула). Такую врожденную реакцию называют ориентировочным рефлексом.

Нижние холмики имеют несколько ядер, а также небольшой участок с корковой организацией. Эти холмики в филогенезе появляются только у млекопитающих и являются слуховыми центрами. Их афференты — слуховые волокна латеральной петли. Эфференты в составе ручек задних холмиков идут к таламусу.

Покрышка. Здесь лежит большинство мезэнцефалических ядер (см. рис. 26).

1. Ядра глазодвигательного и блокового нервов (см. 7.2.1).

2. Центральное серое вещество (ЦСВ) лежит в центре среднего мозга, вокруг мозгового водопровода, образуя слой около 2 мм. ЦСВ тесно взаимодействует с ядрами шва (см. 7.2.6), управляя работой их нейронов. Одна из функций ЦСВ связана с регуляцией болевой чувствительности. При раздражении его нейронов возможно обезболивание за счет влияний на зоны спинного мозга, связанные с переключением болевых сигналов. ЦСВ может оказывать целый ряд тормозных влияний на гипоталамус и кору больших полушарий. Кроме того, центральное серое вещество рассматривается как один из главных центров сна.

  1. Красное ядро (л. ruber) получило свое название из-за того, что имеет розоватый цвет вследствие обилия в нем кровеносных сосудов. Это крупное эллипсоидное ядро протяну то по всей длине среднего мозга. Оно делится на две части — переднюю мелкоклеточную и заднюю крупноклеточную. Передняя часть — эволюционно молодое образование, максимально развита у человека; задняя — филогенетически древняя, у человека невелика. Афференты красного ядра — это кора больших полушарий, ядра мозжечка, базальные ганглии конечного мозга и др. Что касается эфферентов, то в первую очередь надо отметить уже известный нам руброспинальный тракт, который начинается от крупноклеточной части красного ядра. Эфференты от мелкоклеточной части идут к нижней оливе, моторным ядрам черепных нервов, таламусу, базальным ганглиям.

Красное ядро — важнейшее образование экстрапирамидной системы (см. 6.4). Традиционно красное ядро рассматривается как эфферентное звено этой системы (активация мышц-сгибателей и торможение разгибателей конечностей). Вместе с тем характер связей мелкоклеточной части позволяет считать одной из функций красного ядра проведение импульсации по контуру: кора больших полушарий —> мозжечок —> таламус —> кора больших полушарий.

  1. Черная субстанция, substantia nigra, называется так по тому, что часть ее клеток содержит темный пигмент меланин. Это ядро также состоит из двух частей — медио-дорсальной компактной и вентролатеральной ретикулярной. В компактной части находятся дофаминергические нейроны, медиатором клеток ретикулярной части является ГАМК (гамма-аминомас-ляная кислота). Эти две части отличаются и своими многочисленными связями. Так, компактная часть имеет двусторонние связи с базальными ганглиями. Афферентами ретикулярной части служат базальные ганглии, а также субталамус, сама же она посылает эфференты в средний мозг (к глазодвигательным ядрам) и таламус.

Черная субстанция также входит в экстрапирамидную систему. Это ядро принимает участие в регуляции общего уровня двигательной активности посредством влияния на структуры конечного мозга, хвостатое ядро и скорлупу (см. 7.4.2). При паркинсонизме — тяжелом заболевании нервной системы — дофаминергические клетки разрушаются, что сопровождается повышением мышечного тонуса, тремором, затрудненностью в совершении движений.

5. Межножковое ядро лежит над задним продырявленным веществом. Это ядро содержит норадренергические нейроны и работает в контакте с голубым пятном (см. 7.2.3), дополняя его эффекты.

6. Ядра ретикулярной формации (см. 7.2.6).

Кроме ядер, в покрышке среднего мозга расположено белое вещество. Оно представлено такими транзитными трактами, как:

1) медиальная петля;

2) латеральная петля;

3) волокна верхних ножек мозжечка, которые частично заканчиваются в красном ядре, частично идут выше в таламус.

Помимо этого в среднем мозгу начинается ряд восходящих и нисходящих путей:

 

1) руброспинальный тракт;

2) волокна от красного ядра к нижней оливе и ядрам черепных нервов — тегментальный (покрышечный) тракт;

3) тектоспинальный тракт;

4) срединный продольный пучок. Филогенетически это очень старая система, выраженная у низших позвоночных даже лучше, чем у высших. Этот путь связывает друг с другом ядра глазодвигательных нервов, в частности правые и левые, чем достигаются согласованные движения обоих глаз.

Кроме того, срединный продольный пучок связывает вес тибулярные ядра и мозжечок с глазодвигательными ядрами и спинным мозгом, т.е. соединяет центры, которые важны для сохранения равновесия тела и для ориентировки в пространстве.

Кроме восходящих и нисходящих путей, в среднем мозгу присутствуют и комиссуральные волокна. Комиссуры — это волокна, связывающие симметричные участки мозга. Кроме уже упоминавшихся комиссур холмиков, на границе между средним и промежуточным мозгом над ЦСВ лежит задняя комиссура (см. рис. 20), связывающая некоторые структуры среднего и промежуточного мозга.

Основание. Здесь расположена основная масса белого вещества среднего мозга — кортикоспинальный (пирамидный) и кортикомостовой тракты.

 

Ретикулярная формация

В срединной части ствола мозга расположена ретикулярная формация (РФ) — скопление нейронов разных размеров и формы, разделенных множеством проходящих в разных на правлениях волокон, напоминающих сеть (лат. reticulum). В РФ локализовано большое количество нейронов различного вида и размера, сгруппированных в ядра.

Общие черты нейронов РФ — это форма и характер организации их связей. Нейроны РФ являются клетками типа Гольджи I (с длинными аксонами). При этом аксоны имеют две ветви, идущие рострально и каудально. Таким образом, от клеток РФ начинаются как восходящие, так и нисходящие пути, дающие многочисленные коллатерали, окончания которых образуют синапсы на нейронах всех мозговых уровней, т.е. один ретикулярный нейрон может посылать генерируемые им импульсы одновременно в различные структуры ЦНС (рис. 27)


 

 

 


Рис. 27. Нейрон ретикулярной формации и разветвления его аксона:

1тело нейрона; 2аксон; 3дендриты; Iпродолговатый мозг;

IIВаролиев мост; III — средний мозг; IVгипоталамус;

Vталамус

 

Длинные ветвящиеся дендриты нейронов РФ ориентированы преимущественно в плоскости, перпендикулярной про дольной оси мозга. Для РФ характерна конвергенция (схождение) афферентации от разных сенсорных систем на одном нейроне. Например, на одной ретикулярной клетке могут образовывать синапсы чувствительные волокна, несущие ин формацию от кожных, зрительных и слуховых рецепторов.

В связи с такими особенностями связей (как афферентных, так и эфферентных) ретикулярная система была названа не специфической в отличие от специфических систем, которые принимают информацию от совершенно определенных структур и посылают ее по конкретным «адресам».

По структурно-функциональным критериям РФ делится на 3 зоны: медианную — по средней линии, медиальную — внутренние отделы ствола и латеральную, нейроны которой лежат вблизи сенсорных ядер. В медиальных отделах РФ продолговатого мозга и моста находят большие и даже гигантские нейроны, в латеральных отделах этого же уровня обнаруживают малые и средние нейроны; в среднем мозгу расположены преимущественно малые нейроны. Медианная зона протянута от продолговатого мозга до каудальных (задних) отделов среднего мозга. Структуры, входящие в эту зону, объединяются под общим названием ядра шва. В среднем мозгу к ядрам шва примыкают ядра центрального серого вещества, по ряду особенностей сходные с ядрами РФ. Для нейронов ядер шва характерно присутствие в качестве медиатора серотонина.

Основной объем афферентации РФ получает от сенсорных образований, таких как чувствительные ядра, спинно-ретикулярный тракт и т.п. Вместе с тем на нейронах РФ так же образуют синапсы коллатерали от ряда нисходящих путей, в частности кортикоспинального и руброспинального трактов. Получает РФ афференты и от мозжечка (от ядер шатра).

Эфференты РФ образуют две основные системы волокон — восходящую и нисходящую. Восходящие аксоны идут в передний мозг— к неспецифическим ядрам таламуса (про межуточный мозг), коре больших полушарий; нисходящие аксоны направляются в СМ. Кроме того, волокна от РФ идут к мозжечку.

Многочисленные связи существуют и внутри РФ между различными ее образованиями, а также между ядрами РФ и другими стволовыми структурами.

РФ — мозговая система, регулирующая работу ЦНС и выполняющая важнейшие интегративные (объединяющие) функции. Эти функции очень многочисленны, хотя и не до конца исследованы. РФ играет ключевую роль в управлении общим уровнем активности нервной системы, в частности в регуляции цикла «сон— бодрствование». Через пути, связывающие РФ со спинным мозгом, она принимает участие в управлении позой, локомоцией и целенаправленными движениями. Ядра РФ участвуют также в регуляции, связанной с жизненно важными рефлексами. Так, в РФ продолговатого мозга и моста находятся центры дыхания (с подразделением на центр вдоха и центр выдоха), сосудодвигательный центр (регулирующий тонус сосудов и работу сердца), центр слюноотделения и выделения других пищеварительных соков, центр глотания, а также центры таких защитных рефлексов, как кашель, чихание, рвота.

Из-за наличия в РФ дыхательного и сосудодвигательного центров нормальная работа этого отдела жизненно необходима. В то время как повреждение, например, структур конечно го мозга нередко почти не вызывает последствий в связи с большими компенсаторными возможностями ЦНС, даже не значительные повреждения РФ мозгового ствола приводят к тяжелым нарушениям функций организма, и даже к смерти.

Мозжечок

Общее строение

Мозжечок, cerebellum, управляет точными согласованными движениями и сохранением равновесия. Его ширина равняется примерно 10 см, толщина — 3 см. Масса мозжечка составляет около 11% от массы всего головного мозга. Сверху он покрыт корой, под которой находится белое вещество. В толще белого вещества лежат ядра серого вещества. Такую же организацию имеют и большие полушария. Поэтому мозжечок называют иногда «малый мозг».

Мозжечок расположен на задней стороне ствола и состоит из двух полушарий, hemispheria, и непарной соединительной части — червя, vermis. Нижняя поверхность червя является крышей IV желудочка. Сверху мозжечок покрыт большими полушариями переднего мозга. Мозжечок имеет три пары ножек— нижние, средние и верхние. Они представляют собой волокна белого вещества, соединяющие мозжечок с другими мозговыми структурами. На разрезе белое вещество мозжечка имеет вид мелких веточек. В результате общая картина белого и серого вещества напоминает дерево (ее даже называют «древом жизни»).

Кора мозжечка образует узкие извилины — листки мозжечка, отделенные друг от друга бороздами. Крупные борозды делят мозжечок на доли и дольки (рис. 28). Каждой дольке червя соответствует долька полушария (см. таблицу).

 

 
 

 

 


Рис. 28. Схема мозжечка, показывающая его доли и дольки:

1передняя доля, IIсредняя доля, IIIзадняя доля, IVфлоккуло-нодулярная доля; 1-9дольки червя: 1язычок мозжечка, 2центральная долька, 3верхушка, 4скат, 5— листок, 6бугор, 7пирамида, 8язычок червя, 9узелок, 10—18дольки полушарий: 10крыло центральной дольки,

11передняя и 12задняя части четырехугольной дольки,

13верхняя и 14нижняя полулунные дольки, 15двубрюшная

долька, 16миндалина, 17околоклочок, 18клочок


 

Доля   Дольки мозжечка
мозжечка   Червь   Полушария
Верхняя доля 1) язычок мозжечка 1) связка язычка
  2) центральная долька 2) крылья центральной дольки
  3) горка: i) четырехугольная долька:
  а) верхушка а) передняя часть
  б) скат б) задняя часть
Задняя доля 4) листок 4) верхняя полулунная долька
  5) бугор 5) нижняя полулунная долька
Нижняя доля 6) пирамида 6) двубрюшная долька
  7) язычок червя 7) миндалина
  8) узелок 8) клочок

 

Ядра мозжечка хорошо видны на его горизонтальном разрезе (рис. 29). Наиболее медиально в черве лежат ядра шатра, несколько латеральнее — шаровидные ядра, затем — пробковидные ядра. Наиболее латерально в центре полушарий находятся зубчатые ядра, каждое из которых своей формой напоминает складчатую чашу.

У различных частей мозжечка разный филогенетический возраст, в связи с чем выделяют древний, старый и новый мозжечок.

К древнему мозжечку, archicerebellum [1], относится небольшая долька, расположенная в наиболее каудальной части полушарий — клочок, flocculus, и соответствующий ей в черве узелок, noclulus. Сюда же относят ядра шатра. Древний мозжечок называют иногда клочково-узелковой или флоккуло-нодулярной долей (см. рис. 28). Он связан с вестибулярными ядрами, поэтому при его повреждении нарушается способность поддерживать равновесие тела, как и при патологиях вестибулярного аппарата. Походка таких больных становится шатающейся, они часто страдают головокружением, тошнотой и рвотой.

 


 

 
 

 

 


Рис. 29. Мозжечок {горизонтальный разрез), крыша среднего мозга и верхняя часть промежуточного мозга:

1полушарие мозжечка; 2червь; 3кора мозжечка;

4белое вещество мозжечка; 5 — ядро шатра; 6шаровидное

ядро; 7пробковидное ядро; 8зубчатое ядро; 9верхний холмик

четверохолмия; 10нижний холмик четверохолмия; 11эпифиз; 12

комиссура поводков; 13треугольник поводков; 14таламус; 15III

мозговой желудочек; 16колонны свода

 

К старому мозжечку, paleocerebellum, относят весь червь, кроме узелка и ската, переднюю долю полушарий, а также шаровидное и пробковидное ядра. В связи с выполнением общей функции их объединяют в промежуточное ядро мозжечка. Старый мозжечок образовался в связи с развитием способности к локомоции. При его поражении нарушается работа мускулатуры шеи и туловища, затруднено поддержание позы. Кроме того, нарушается точность и сила сгибательно-разгибательных движений конечностей (как правило, наблюдается их патологическое усиление). Наиболее известный тест на наличие повреждений старого мозжечка — пальце-носовая проба. Основные входные влияния поступают в старый мозжечок по спинно-мозжечковым трактам; основные выходы идут в РФ и крупноклеточную часть красно го ядра.

Большая часть полушарий и зубчатое ядро образуют самую молодую часть — новый мозжечок, neocerebellum. Он развивается в связи с совершенствованием тонкой моторики конечностей. Особенно сильное развитие новый мозжечок получил у человека в связи с чрезвычайно дифференцированными движениями при трудовых процессах. Поражение этой части отражается более всего на движениях кистей конечностей, в которых развивается атаксия — нарушение координации и точности движений, так, например, резко ухудшается почерк. Может также изменяться и речь — она становится растянутой, замедленной или взрывчатой.

Новый мозжечок через зубчатые ядра и таламус в промежуточном мозгу связан с двигательной корой больших полушарий. В результате он способен регулировать активность кортикоспинального тракта и управлять такими сложнейшими двигательными навыками как, например, письмо, печатание на клавиатуре, игра на музыкальных инструментах и т.п. Он участвует в двигательном обучении и управлении наиболее сложными движениями, в частности движениями пальцев.

Таким образом, основной функцией мозжечка является регуляция и коррекция движений в процессе их выполнения, программирование движений и двигательное научение, т.е. перевод произвольных движений в автоматизированные. За поминание параметров двигательных реакций в мозжечке происходит за счет того, что «копии» всех программ произвольных движений (т.е. движений, контролируемых сознанием) через мелкоклеточную часть красного ядра и ядра оливы поступают на клетки Пуркинье (см. далее). При поражении полушарий мозжечка нарушается точность, согласованность и быстрота выполнения движений, не вырабатываются новые тонкие двигательные навыки, нарушаются речь и письмо, наблюдается дрожь в конечностях.

Кора мозжечка

В старой и новой коре мозжечка, также как и коре больших полушарий, существуют четкие соматотопические проекции тела. Кора состоит из трех слоев, суммарная толщина которых примерно 0,8 - 0,9 мм. Самый наружный слой нейронов называется молекулярным, средний — ганглиозным, а внутренний — зернистым (гранулярным).

В коре мозжечка различают пять основных типов нейронов, причем все нейроны за исключением клеток-зерен — тормозные, т.е. их аксоны образуют на других клетках синапсы, под действием которых постсинаптические нейроны ослабляют свою активность.

Рассмотрим строение коры мозжечка более подробно (рис. 30). Начнем со среднего (ганглиозного) слоя. Он состоит из клеток Пуркинье. Это крупные (диаметром ~ 60 мкм) клетки грушевидной формы (см. рис. 9, Д). От клеток Пуркинье вверх в молекулярный слой отходят два - три сильно ветвящихся дендрита. Характерно, что все ветви дендритов располагаются в одной плоскости, перпендикулярной направлению извилин мозжечка.

Аксоны клеток Пуркинье идут вглубь мозжечка в белое вещество и заканчиваются на клетках ядер мозжечка. Необходимо обратить внимание на то, что только аксоны клеток Пуркинье являются эфферентами коры мозжечка.

Во внутреннем (зернистом) слое лежат клетки-зерна. Это самые мелкие клетки нервной системы, их диаметр 4-8 мкм. Количество зернистых клеток огромно — в 1 мм кубическом их 2,8-106. Эти клетки имеют 3 - 4 коротких дендрита, заканчивающихся концевыми ветвлениями в виде лапки птицы. На них образуют возбуждающие синапсы мшистые (см. далее) волокна, формируя характерные структуры — гломерулы (клубочки) мозжечка. Аксоны клеток-зерен идут в молекулярный слой и в нем Т-образно ветвятся. Ветви идут параллельно поверхности коры вдоль извилин мозжечка, образуя систему параллельных волокон. Они пересекают плоскости ветвления дендритов клеток Пуркинье и образуют с ними, а также с дендритами всех остальных клеток мозжечка, синапсы.

 


 

 

 


Рис. 30. Кора мозжечка:

Iмолекулярный слой, IIганглиозный слой, IIIзернистый слой,

IVбелое вещество, 1звездчатая клетка; 2корзинчатая клетка,

3клетка Пуркинье; 4аксон клетки Пуркинье; 5 — лазающее

волокно; 6мшистое волокно; 7зернистая клетка; 8клетка

Гольджи; 9параллельное волокно

 

Кроме зернистых клеток, во внутреннем слое коры мозжечка есть клетки Гольджи. Их дендриты поднимаются в молекулярный слой, где контактируют с параллельными волок нами. Аксоны этих клеток образуют тормозные синапсы на клетках-зернах.

В наружном (молекулярном) слое находятся дендриты клеток Пуркинье и клеток Гольджи, а также аксоны клеток-зерен (параллельные волокна). Кроме того, здесь есть два типа тормозных нейронов — корзинчатые и звездчатые.

Корзинчатые нейроны лежат в нижней части молекулярно го слоя. Это мелкие (10-15 мкм) клетки с тонкими длинными дендритами. Их аксоны идут параллельно поверхности коры. От аксонов отходят коллатерали, которые оплетают тела клеток Пуркинье, образуя характерную систему корзинок.

Звездчатые клетки лежат выше корзинчатых. Их аксоны образуют одиночные синапсы на телах и дендритах клеток Пуркинье.

Афференты коры мозжечка образуют две системы волокон — лазающие (лиановидные) и мшистые (моховидные).

Лазающие волокна — это аксоны нейронов, лежащих в ядрах олив (см. 7.2.2). Они оканчиваются на соме и дендритах клеток Пуркинье. На каждой клетке Пуркинье образует синапсы только одно лазающее волокно.

Мшистые волокна, которых гораздо больше, чем лазающих, образуют синапсы на дендритах клеток-зерен и приходят от самых разных структур ЦНС (см. далее). Одно мшистое волокно образует синапсы примерно на 20 клетках-зернах.

Система афферентных волокон организована так, что по ступающая в кору мозжечка импульсация в конечном итоге адресуется клеткам Пуркинье. При запуске движения происходит торможение клеток Пуркинье через, прежде всего, звездчатые и корзинчатые клетки. Как следствие, на время прекращается тормозное действие аксонов клеток Пуркинье на ядра мозжечка. В результате наблюдается активация тех двигательных программ, рефлекторные дуги которых проходят через соответствующие нейроны ядер.

Основные связи внутри мозжечка, а также между мозжечком и другими структурами ЦНС представлены на рис. 31.


 

 


Белое вещество мозжечка

Включает белое вещество, лежащее в толще мозжечка, и три пары ножек. В толще мозжечка расположены волокна, идущие от коры мозжечка к его ядрам, а также продолжение афферентных волокон, образующих ножки мозжечка и эфферентные волокна, переходящие в его ножки.

Как уже было сказано, три пары ножек соединяют мозжечок с другими структурами ЦНС.

Нижние ножки связывают мозжечок с продолговатым и спинным мозгом. В них проходят главным образом афферент ные волокна:

1) оливо-мозжечковый путь;

2) задний (дорсальный) спинно-мозжечковый путь;

3) вестибуломозжечковый путь (от вестибулярных ядер мозгового ствола);

4) волокна от нежного и клиновидного ядер продолговатого мозга;

5) волокна от ретикулярной формации.

Проходят в нижних ножках и эфферентные волокна — они начинаются в ядрах шатра и идут к вестибулярным ядрам. От вестибулярных ядер, в свою очередь, начинается вестибулоспинальный тракт.

Средние ножки связывают ядра моста с корой мозжечка (мосто-мозжечковый тракт). Напомним, что ядра моста в свою очередь получают афференты от коры больших полушарий (см. 7.2.3). Таким образом, через средние ножки мозжечок получает информацию о запускаемых большими полушариями двигательных программах.

Верхние ножки содержат главным образом эфферентные волокна, идущие от ядер мозжечка (кроме ядер шатра) к таламусу, красному ядру, РФ. Афферентные волокна верхних ножек — это передний (вентральный) спинно-мозжечковый путь.

Передний мозг

Промежуточный мозг

Передний мозг состоит из двух частей — промежуточного мозга и конечного мозга.

Промежуточный мозг, diencephalon, — конечный отдел мозгового ствола, сверху он покрыт большими полушариями, сзади соединен со средним мозгом. Полостью промежуточного мозга является IIIмозговой желудочек. Он расположен по средней линии и на фронтальном (т.е. параллельном лобной поверхности) разрезе имеет вид узкой вертикальной щели.

Промежуточный мозг (рис. 32, 33) состоит из парных образований — таламусов, thalamus (зрительных бугров), примыкающих к ним сверху непарного эпиталамуса (надбугорья, примыкает к таламусу сверху), непарного гипоталамуса (подбугорья, примыкает к таламусу снизу). Кроме того, в промежуточный мозг входит субталамус, который не виден на поверхности мозга и находится в глубине мозгового вещества между гипоталамусом и средним мозгом.


 

 


Рис. 32. Промежуточный мозг и средний мозг (вид сверху):

1мозолистое тело (конечный мозг); 2проводящие пути переднего

мозга; 3таламус; 4хвостатое ядро (конечный мозг); 5эпифиз;

6III мозговой желудочек; 7— четверохолмие

Таламус. Каждый таламус (см. рис. 32) представляет собой яйцевидное образование длиной примерно 4 см. Медиальные поверхности таламусов образуют боковые стенки третьего желудочка. Между этими стенками находится межбугорное сращение (серое вещество), соединяющее правый и левый таламусы. Передний конец таламуса несколько заострен, а задний расширен и утолщен.

 
 

 

 


Рис. 33. Промежуточный мозг и средний мозг (вид снизу):

1-4средний мозг: 1водопровод, 2красное ядро, 3черная

субстанция; 4ножки мозга; 5-8гипоталамус: 5мамиллярные

тела, 6воронка, 7зрительный перекрест, 8серый бугор;

9зрительный тракт; 10зрительный нерв; 11 — 12таламус:

11наружное коленчатое тело, 12внутреннее коленчатое тело;

13обонятельный треугольник (конечный мозг)

 

В каждом таламусе расположено около 40 ядер (рис. 34), которые можно разделить по выполняемым ими функциям на проекционные, ассоциативные и неспецифические.

 
 

 

 


Рис. 34. Ядра таламуса:

1лимбическиеядра; 2-вентролатеральные (двигательные) ядра;

3заднее вентральное ядро; 4подушка; 5латеральное

коленчатое тело; 6медиальное коленчатое тело;

7— медиодорсалъное (ассоциативное) ядро

 

 

Проекционные ядра - это переключательные ядра, полу чающие входы из различных внеталамических структур. Волокна из этих структур образуют синапсы на нейронах проекционных ядер, а аксоны последних проводят импульсацию в определенные локальные области коры больших полушарий. Проекционные ядра подразделяются на сенсорные, двигательные и лимбические.

Сенсорные ядра обеспечивают быстрое проведение сенсорной афферентации от конкретных сенсорных систем в первичные проекционные зоны коры больших полушарий. Пути от всех рецепторов (за исключением обонятельных) проходят через таламус и имеют там свои представительства. Например, в латеральном (наружном) коленчатом теле (ЛКТ), являющемся проекционным зрительным ядром и находящемся в задней наружной части таламуса, заканчиваются волокна зрительного тракта. Из ЛКТ нервные импульсы поступают в затылочную долю коры больших полушарий, где находится центральный отдел зрительного анализатора. В медиальном (внутреннем) коленчатом теле (МКТ) — проекционном слуховом ядре, расположенном в задней внутренней части таламуса, образуют синапсы волокна от слуховых ядер. МКТ посылает свои проекции в слуховую зону коры в височной доле. Отметим, что ЛКТ и МКТ объединяют под названием метаталамус. Проекционным ядром систем кожной и мышечной чувствительности является заднее вентральное ядро таламуса. Здесь заканчиваются волокна от нежного и клиновидного ядер продолговатого мозга (медиальный лемниск) и ядер тройничного нерва. Аксоны клеток заднего вентрального ядра направляются в переднюю часть теменной доли больших полушарий.

Зрительные функции выполняет также одно из ассоциативных ядер таламуса — подушка.

Необходимо подчеркнуть, что в сенсорных ядрах, как и в других ядрах таламуса, происходит не только переключение информации, но и ее обработка. Суть этой обработки состоит в избирательном проведении информации в кору больших полушарий. Иными словами, таламус исполняет роль фильтра, пропуская в конечный мозг либо очень значимые (сильные, новые) сигналы, либо сигналы, связанные с текущей деятельностью коры больших полушарий. Таким образом, таламус является одной из ключевых структур, обеспечивающих и поддерживающих процессы внимания.

Двигательные (моторные) ядра таламуса, лежащие в его нижней боковой части (вентролатеральные ядра), связаны проекционными волокнами с двигательной корой. Они полу чают информацию от мозжечка и базальных ядер, т.е. являются важнейшим переключательным звеном в системе управления движениями.

Лимбические ядра находятся в передней части таламуса. Они входят в лимбическую систему (см. гл. 9) и проводят сен сорную информацию в лимбические отделы коры больших полушарий.

На ассоциативных ядрах таламуса (дорсальная область) оканчиваются волокна не от одной, а сразу от нескольких сенсорных систем, а также от других ядер таламуса и коры больших полушарий. Это обеспечивает их участие в интегративных функциях головного мозга, т.е. в объединении разных видов чувствительности. Эти ядра посылают свои волокна в ассоциативные зоны коры больших полушарий. Дорсальные ядра — эволюционно молодые отделы промежуточного мозга. Их формирование идет параллельно развитию высших (ассоциативных) центров коры.

Неспецифические (медиальные) ядра таламуса, расположенные в его внутренней части, принадлежат, главным образом, ретикулярной системе. Они получают афференты от большого числа образований и посылают диффузные проекции на обширные области коры, влияя, таким образом, на уровень ее активации.

К медиальным ядрам примыкают области таламуса, обеспечивающие обработку и проведение вестибулярной, вкусовой и болевой чувствительности.

Гипоталамус — подбугорная область промежуточного мозга, высший центр регуляции вегетативных и эндокринных функций (см. рис. 20, 21, 33). Он объединяет ряд структур, окружающих нижнюю часть III мозгового желудочка— мамиллярные (сосцевидные) тела, серый бугор, зрительную хиазму. Серый бугор — это непарный полый выступ нижней стенки III желудочка. Его верхушка вытянута в полую воронку, infundibulum, на слепом конце которой находится железа внутренней секреции гипофиз.

С гипоталамусом связан зрительный нерв, который выходя из глазного яблока, входит в полость черепа. В гипоталамической области примерно половина его волокон переходит на другую сторону, образуя зрительную хиазму (перекрест), chiasma opticum. После перекреста зрительные волокна образуют зрительный тракт, волокна которого идут к различным структурам мозга, в частности, к латеральным коленчатым телам таламуса и к некоторым областям гипоталамуса.

Так же, как и в таламусе, в гипоталамусе выделяют несколько десятков ядер. Однако их функциональная классификация пока разработана недостаточно, так как большинство ядер не обладает узкой функциональной специализацией. Топографически выделяют переднюю группу ядер (паравентрикулярное, супраоптическое, супрахиазменное и др.), среднюю группу (ядро воронки или инфундибулярное ядро и др.) и заднюю группу (ядра мамиллярных тел и др.).

Дополнительно к этому в медиолатеральном направлении в гипоталамусе выделяют перивентрикулярную, медиальную и латеральную зоны (рис. 35). Перивентрикулярная зона образована мелкими нейронами, находящимися вдоль стенок III желудочка (греч. peri — вокруг, лат. ventriculus — желудочек). В медиальной зоне находится основная масса гипоталамических ядер. Латеральная зона содержит главным образом белое вещество (волокна, соединяющие гипоталамус с другими структурами ЦНС). Медиальная зона отделена от латеральной важнейшим проводящим пучком переднего мозга — сводом (см. далее).

 
 

 

 


Рис. 35. Зоны гипоталамуса в медиолатеральном направлении:

I — III желудочек; 2Перивентрикулярная зона, 3медиальная

зона; 4латеральная зона; 5— гипофиз

 

Количество источников афферентации гипоталамуса очень велико. Все его ядра получают прямые входы от коры больших полушарий (особенно ее лобной доли), т.е. аксоны нейронов коры образуют синапсы на клетках ядер гипоталамуса. Также гипоталамус имеет множество сенсорных входов: волокна зрительных нервов, волокна ядер одиночного пути (информация от вкусовых и внутренних рецепторов), волокна латеральной петли (слуховая чувствительность) заканчиваются на его нейронах. Получает афференты гипоталамус от лимбических и ассоциативных ядер таламуса, от РФ, от ряда других образований ЦНС.

Эфференты гипоталамуса главным образом идут к различным исполнительным структурам мозга — вегетативным ядрам, железам внутренней секреции (гипофизу и эпифизу), к покрышке среднего мозга, РФ продолговатого мозга и моста. Некоторые ядра гипоталамуса посылают свои волокна в конечный мозг — к коре больших полушарий и базальным ганглиям.

Большинство этих волокон проходит в составе проводящих пучков переднего мозга.

Отметим только три из них:

1) свод, fornix, волокна, идущие от корковой структуры гиппокампа (см. 7.4.2) к мамиллярным телам гипоталамуса;

2) мамилло-таламический тракт — волокна, идущие от мамиллярных тел к лимбическим ядрам таламуса;

3) гипоталамо-гипофизарный тракт — волокна, идущие от паравентрикулярного и супраоптического ядер к задней доле гипофиза.

Гипоталамус управляет всеми основными гомеостатическими процессами, причем осуществляет это как нервным, так и гуморальным путем.

Нервная регуляция обеспечивается, во-первых, за счет управления деятельностью вегетативной нервной системы и, во-вторых, участием в организации поведения, удовлетворяющего основные биологические потребности организма. Эти функции гипоталамуса обеспечиваются благодаря наличию в нем центров различных потребностей, а также нейронов, реагирующих на изменение внутренней среды организма (температуру крови, ее водно-солевой состав, концентрацию в ней гормонов и т.п.).

Например, при понижении в крови концентрации глюкозы, возбуждается находящийся в сером бугре центр голода, что приводит к возникновению чувства голода. Это вызывает за пуск поведенческих реакций, направленных на удовлетворение пищевой потребности. И наоборот, при повышении в крови концентрации глюкозы (что происходит после еды) возбуждается центр насыщения, тормозящий центр голода. При повышении температуры тела возбуждаются нейроны центра терморегуляции, которые запускают вегетативные ре акции (например, расширение поверхностных кожных сосудов), приводящие к понижению температуры. Также в гипоталамусе находятся центры жажды, водного насыщения, центры полового и родительского поведения (передняя область), цен тры агрессии и страха (задняя область) и т.п. Таким образом, именно здесь определяется уровень актуальности биологических потребностей организма.

Гипоталамус — одна из центральных структур лимбической системы мозга, осуществляющей организацию эмоционально го поведения. Несколько упрощая возникающие при этом процессы, данную функцию гипоталамуса можно описать следующим образом. Если потребности организма удовлетворяются, возбуждается расположенный здесь центр положительного подкрепления, что сопровождается возникновением положи тельных эмоций; если нет— возбуждается центр отрицательного подкрепления, и возникают отрицательные эмоции. Работа систем положительного и отрицательного подкрепления, в свою очередь, лежит в основе процессов обучения в ЦНС, формирования либо ослабления нервных связей (условных рефлексов, ассоциаций).

Гуморальная регуляция осуществляется в тесной связи с гипофизом (см. 1.3.1). Рассмотрим связь между гипоталамусом и гипофизом более подробно.

В нервной ткани есть нейросекреторные клетки, синтезирующие и выделяющие биологически активные вещества, действующие как гормоны. Кроме того, многие медиаторы нервной системы также могут действовать как гормоны. То есть если синтезируемое нейроном вещество выделяется в синоптическую щель и действует на постсинаптическую мембрану, оно является медиатором; если то же вещество выделяется в кровь и действует на орган-мишень — это гормон. Таким образом, нейрогормоны — биологически активные вещества, вырабатываемые нейросекреторными клетками и выделяющиеся в кровь.

Большинство нейрогормонов синтезируется в гипоталамусе — месте непосредственного взаимодействия нервной и эндокринной систем и высшем органе гормональной регуляции основных эндокринных функций. Гипоталамус и гипофиз образуют единую гипоталамо-гипофизарную систему (рис. 36).

 

 
 

 


Рис. 36. Гипоталамо-гипофизарная система:

1.паравентрикулярное ядро; 2супраоптическое ядро; 3гипофизотропная зона; 4зрительный перекрест; 5мамиллярные тела;

баксоны от нейронов паравентрикулярного и супраоптического ядер,

идущие к гипофизу; 7воронка; 8-10 — гипофиз: 8передняя доля,

9промежуточная доля, 10задняя доля

Как уже говорилось, в гипоталамусе есть рецепторы со стояния внутренней среды. Анализируя поступающую ин формацию, гипоталамус трансформирует ее в гуморальные факторы — нейрогормоны. Таким образом, нейроны гипоталамуса активируют либо тормозят выделение гипофизом его гормонов. Рассмотрим этот процесс более детально.

В средней части гипоталамуса (гипофизотропные зоны) находятся мелкоклеточные ядра (ядро воронки, ядра серого бугра), в которых синтезируется пептидные (состоящие из аминокислот) гормоны. Эти гормоны контролируют работу железистых клеток аденогипофиза и промежуточной доли гипофиза. Аксоны нейронов этих ядер оканчиваются в районе воронки, соединяющей гипоталамус и гипофиз. Там они выделяются в кровь и через нее попадают к железистым клеткам передней доли гипофиза. Гормоны, стимулирующие синтез и выделение гормонов гипофиза, получили название рилизинг гормонов (releasing-factors), или либеринов, а тормозящие эти процессы — ингибирующих гормонов, или статинов.

В передней части гипоталамуса находятся два ядра (паравентрикулярное и супраоптическое) с крупными нейронами, в которых синтезируются нейрогормоны окситоцин и вазопрессин. Аксоны этих нейронов формируют гипоталамо-гипофизарный тракт, по которому гормоны транспортируются из тел клеток в нейрогипофиз. Окончания аксонов образуют тесные контакты с капиллярами, в которые и выделяются гормоны. Таким образом, нейрогипофиз сохраняет и по мере необходимости выделяет в кровь гормоны, синтезированные в гипоталамусе.

Таким образом, гипоталамус на основании анализа со стояния внутренней среды организма запускает три группы реакций:

1) вегетативной нервной системы, направленные на поддержание гомеостаза;

2) поведенческие, направленные на удовлетворение потребностей организма;

3) эндокринной системы (главным образом через гипофиз).

Эпиталамус (см. рис. 32) занимает медиодорсокаудальное положение относительно других структур промежуточного мозга, т.е. находится в верхней (дорсальной) и задней (каудальной) его части посередине (медиально). Он занимает очень небольшой объем мозга и кроме различных нервных образований содержит железу внутренней секреции эпифиз (шишковидное тело).

К нервным образованиям эпиталамуса относятся поводки (или уздечки), habenula, треугольники поводков, комиссура поводков, ядра поводков.

Волокна, соединяющие эпиталамус с различными структурами переднего мозга (мозговые полоски), проходят по границе между медиальной и дорсальной сторонами таламуса. В каудальной части полоски переходят в поводок, который расширяется, образуя треугольник поводка. Медиальные части двух треугольников соединены волокнами комиссуры поводков. Под ней проходит задняя комиссура (см. 7.2.5). К комиссуре повод ков и задней комиссуре прикреплен эпифиз. В глубине треугольников поводков лежит серое вещество — ядра поводков (хабенулярные ядра), которые входят в лимбическую систему.

Функции эпиталамуса до сих пор не вполне ясны. По-видимому, в первую очередь, они связаны с деятельностью эпифиза, а нервные элементы эпиталамуса обеспечивают управление этой железой.

Эпифиз иннервируется симпатической нервной системой. Кроме того, он получает волокна от супрахиазменного ядра гипоталамуса, которое имеет прямые входы от зрительного нерва. Благодаря этому эпифиз получает информацию об уровне освещенности. Основной гормон эпифиза— мелатонин. Выяснилось, что ежедневные колебания его концентрации ритмичны и прямо связаны со световым циклом — концентрация мелатонина больше ночью. Это позволяет говорить о важной роли эпифиза в регуляции суточных ритмов. Мелатонин также влияет на половое созревание и половое поведение, тормозя активность половых желез.

Субталамус, как уже было сказано, находится на границе между средним мозгом и гипоталамусом. Структуры субталамуса можно увидеть только на разрезе мозга. Они включают несколько парных ядер серого вещества, разделенных прослойками белого вещества. Наиболее крупное ядро субталамуса — субталамическое ядро (тело Люиса).

Белое вещество включает тракты, проходящие из красного ядра среднего мозга в конечный мозг, а также собственные афференты и эфференты субталамуса. Основные афференты субталамус получает из конечного мозга — от коры больших полушарий и базальных ядер. Эфференты субталамуса идут в РФ продолговатого мозга и моста, в черную субстанцию и красное ядро (структуры среднего мозга), а также к базальным ядрам.

Из характера связей ясно, что субталамус входит в экстрапирамидную систему мозга (см. 6.4). Он принимает большое участие в организации движений, в частности локомоции — ритмических сгибаний и разгибаний конечностей и туловища, обеспечивающих перемещение тела в пространстве.

Конечный мозг

Конечный мозг, telencephalon, — наиболее массивный от дел мозга человека. Он занимает большую часть полости черепа. Конечный мозг состоит из парных больших полушарий, hemispheria cerebri, разделенных продольной щелью и прикрывающих сверху большую часть мозгового ствола и мозжечок. Выпуклая верхняя поверхность больших полушарий имеет три полюса: лобный, височный и затылочный. Нижняя поверхность больших полушарий уплощена. Длина полушария примерно 17,5 см, ширина—6,5 см. Снаружи полушария покрыты серым веществом — корой больших полушарий, ее также называют плащом или мантией. Под корой находится белое вещество, в глубине которого лежат базальные ядра (ядра конечного мозга, базальные ганглии). Полостями полушарий являются боковые желудочки.

Белое вещество полушарий состоит из трех систем волокон:

1. Проекционные волокна представляют собой восходящие и нисходящие пути, связывающие полушария с остальными отделами ЦНС. Примером нисходящих волокон могут служить волокна кортикоспинального (пирамидного), кортикорубрального и кортикомостовых трактов, а восходящих — волокна, идущие от таламуса к коре.

2. Ассоциативные волокна связывают различные области коры одного полушария.

3. Комиссуральные волокна соединяют симметричные отделы правого и левого полушарий. Самая большая комиссура мозга — мозолистое тело, corpus callosum, представляет собой толстую горизонтальную пластинку, находящуюся в глубине продольной щели, разделяющей полушария. От этой пластинки в толще полушарий расходятся волокна, образующие лучистость мозолистого тела. В мозолистом теле выделяют (см. рис. 41) переднюю часть — колено, среднюю — тело и заднюю — валик. Колено загибается вниз и переходит в клюв мозолистого тела. Кроме мозолистого тела, в состав конечного мозга входит передняя комиссура, которая соединяет некоторые обонятельные структуры и участки височных долей, куда не распространяются каллозальные волокна (волокна мозолистого тела). Базальные ядра включают хвостатое ядро, бледный шар, скорлупу, ограду и миндалевидное тело (рис. 37, 38).


Рис. 37. Базальные ядра:

1-3хвостатое ядро: 1головка, 2тело, 3хвост;

4скорлупа и бледный шар; 5миндалевидное ядро;

6боковой желудочек

Самым крупным из этих ядер является хвостатое ядро. Оно вытянуто в ростро-каудальном направлении (спереди назад) и имеет С-образную форму. Утолщенная передняя часть образует головку хвостатого ядра, она переходит в тело и заканчивается хвостом. На фронтальном срезе (рис. 38) видна только головка этого ядра.

 
 


Рис. 38. Фронтальный разрез через большие полушария

на уровне серого бугра: 1мозолистое тело; 2прозрачная перегородка;

3центральная часть бокового желудочка; 4свод; 5 — III желудочек;

6хвостатое ядро; 7— таламус; 8ограда; 9скорлупа;

10бледный шар; 11миндалевидное тело; 12серый бугор;

13воронка; 14зрительный тракт; 15зрительная хиазма;

16зрительный нерв; 17кора островковой доли;

18боковая борозда

Бледный шар, скорлупа и ограда находятся латеральнее и ниже от хвостатого ядра. Они отделены от него прослойкой белого вещества (волокна корковых трактов). Самое медиальное положение занимает бледный шар, латеральнее от него лежит чашеобразная скорлупа, отделенная от бледного шара полоской белого вещества. Между скорлупой и островковой корой (см. далее) лежит полоска серого вещества — ограда.

Хвостатое ядро, бледный шар и скорлупа на разрезе выглядят как чередующиеся полоски серого и белого вещества. Из-за этого они были объединены под общим названием полосатое тело, corpus striatum. В дальнейшем при изучении клеточного состава и характера связей базальных ганглиев выясни лось, что бледный шар является филогенетически более древним образованием и значительно отличается от хвостатого ядра и скорлупы. В связи с этим бледный шар, globus pallidus, выделяют из полосатого тела как отдельную единицу — паллидум. Филогенетически более молодые хвостатое ядро и скорлупу принято называть стриатум. Вместе они образуют стриапаллидарную систему, имеющую очень обширные связи, в первую очередь, с таламусом, а также с корой больших полушарий, мозжечком, черной субстанцией, красным ядром. Очень значительные связи открыты и внутри самой системы — между отдельными ее ядрами.

Основные функции стриапаллидарной системы связаны с управлением движениями. Наряду с мозжечком, она является крупнейшим подкорковым двигательным центром. При этом если мозжечок связан с регуляцией конкретных параметров выполняемых движений (амплитудой мышечных сокращений, их согласованностью при одновременной реализации и т.п.), то стриапаллидарная система рассматривается как область, управляющая запуском движений и содержащая информацию о двигательных программах — последовательных комплексах движений. Действительно, при запуске движений активация нервных клеток наблюдается сначала в ассоциативной лобной коре, затем в стриатуме и бледном шаре, и лишь затем — в моторной коре больших полушарий и мозжечке. Как и мозжечок, структуры стриапаллидарной системы участвуют в двигательном обучении и превращении исходно произвольных (т.е. выполняемых под контролем сознания) движений в автоматизированные. При повреждении, например, стриатума наблюдается запуск патологических движений — высокоамплитудных подергиваний рук (хорея), скручиваний туловища (атетоз). Проявления паркинсонизма (тремор и т.п.) также связаны в основном с нарушением влияния черной субстанции на хвостатое ядро.

Миндалевидное тело, corpus amygdaloideum, — сферическое образование, располагающееся под скорлупой около внутренней части переднего отдела височной коры. Амигдала (миндалина) соприкасается с хвостом хвостатого ядра, который, закручиваясь, заходит в височные доли. Она имеет многочисленные связи с корой больших полушарий, гипоталамусом, обонятельными мозговыми структурами. Амигдала входит в лимбическую систему мозга и играет большую роль в организации эмоций. Повреждение миндалины часто ведет к глубоким изменениям психики, депрессивным и маниакальным состояниям.

Кора больших полушарий — высший отдел ЦНС, она отвечает за восприятие всей поступающей в мозг информации, за управление сложными движениями, мыслительную и речевую деятельность. Филогенетически это самое молодое образование нервной системы. Впервые в эволюции она появляется у пресмыкающихся, но в полном объеме развивается только у млекопитающих.

Кора больших полушарий человека и ряда других млеко питающих имеет складчатый вид. На ее поверхности выделяют многочисленные извилины, разделенные бороздами, что очень увеличивает ее площадь. Поверхность коры обоих полушарий взрослого человека колеблется от 1470 до 1670 см2. Крупные борозды разделяют каждое полушарие на пять долей — лобную, теменную, затылочную, височную и островок. Островок, insula, — доля, не выходящая на поверхность полушария; инсулярная кора расположена в глубине латеральной борозды, представляет собой расширение ее дна и при крыта височной долей (см. рис. 38). Кроме этого, в коре можно выделить лимбическую долю, расположенную на медиальной (срединной) поверхности и представляющую собой группу извилин, окружающих ствол мозга и мозолистое тело (см. рис. 41). Для человека характерно преобладание лобной и височной долей, поверхность которых в сумме составляет 47% от всей поверхности полушарий.

Основные борозды и извилины коры больших полушарий представлены на рис 39, 40, 41.

Расположение борозд и извилин на латеральной (боковой) поверхности (рис. 39) не представляет сложностей для изучения. Отметим лишь, что здесь находятся две самые глубокие борозды — центральная (роландова), отделяющая лобную долю от теменной, и латеральная (боковая или сильвиева), отделяющая височную долю от лобной и теменной. Перед центральной бороздой лежит передняя центральная (прецентральная) извилина, а за ней — задняя центральная (постцентральная) извилина. Теменная доля отделяется от затылочной теменно-затылочной бороздой, отчетливо видной только на медиальной поверхности мозга (см. рис. 41)

 

 
 

 


Рис. 39. Латеральная поверхность полушарий:

1боковая (сильвиева) борозда; 2центральная (роландова)

борозда; 3 - 14лобная доля: 3прецентральная борозда,

4прецентральная извилина, 5верхняя лобная борозда,

6нижняя лобная борозда, 7 — верхняя лобная извилина,

8средняя лобная извилина, 9нижняя лобная извилина,

10передняя ветвь, 11восходящая ветвь, 12покрышечная

часть, 13треугольная часть, 14глазничная (орбитальная)

часть; 15 -21теменная доля: 15постцентральная борозда,

16постцентральная извилина, 17внутритеменная борозда,

18верхняя теменная долька, 19нижняя теменная долька,

20надкраевая извилина, 21угловая извилина; 22-26височная

доля: 22верхняя височная борозда, 23нижняя височная борозда,

24верхняя височная извилина, 25средняя височная извилина,

26нижняя височная извилина; 27затылочный полюс

 

Рассматривая базальную (нижнюю) поверхность полушарий (рис. 40), нужно иметь в виду, что ствол мозга на этом рисунке удален (сравните с рис. 21 — нижняя поверхность головного мозга). Нижняя поверхность лобной доли носит название «орбитальная кора».


 


Рис. 40. Нижняя поверхность полушарий:

1 – 10лобная доля: 1обонятельная борозда, 2прямая извилина,

3глазничные борозды, 4глазничные извилины, 5обонятельная

луковица, 6обонятельный тракт, 7— латеральная обонятельная

полоска, 8медиальная обонятельная полоска, 9передняя

продырявленная субстанция, 10обонятельный треугольник;

11 – 19височная и затылочная доли: 11затылочно-височная

борозда, 12окольная борозда, 13гиппокампальная борозда,

14шпорная борозда, 15латеральная затылочно-височная

извилина, 16медиальная затылочно-височная извилина,

17парагиппокампальная извилина, 18крючок,

19язычная извилина

Справа обонятельная луковица и часть обонятельного тракта удалены.

 

В медиальной части лобной доли проходит обонятельная борозда, в которой лежит обонятельная луковица и идущий от нее обонятельный тракт (на рисунке в левом полушарии они удалены). К нижней поверхности обонятельной луковицы подходят волокна обонятельного нерва. Обонятельный тракт в своем основании разветвляется на латеральную, среднюю и медиальную обонятельные полоски. Между латеральной и медиальной полосками лежит обонятельный треугольник. В его глубине находится переднее обонятельное ядро, а в его основании — переднее продырявленное вещество. Через него, как и через заднее продырявленное вещество (см. 7.2.5), в мозг входит много сосудов.

Большинство борозд и извилин затылочной и височной долей видны как на нижней, так и на медиальной поверхности полушарий (см. рис. 40, 41). Это затылочно-теменная, окольная, гиппокампальная и шпорная борозды; медиальная и латеральная затылочно-теменные извилины, язычная и парагиппокампальная извилины, а также извилина, называемая крючок.

Наибольшее число образований переднего мозга видно на медиальной {срединной) поверхности (рис. 41). Для того что бы лучше представить себе вза





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 577 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Не будет большим злом, если студент впадет в заблуждение; если же ошибаются великие умы, мир дорого оплачивает их ошибки. © Никола Тесла
==> читать все изречения...

2539 - | 2234 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.