Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Температурные адаптации растений




Функциональная деятельность живых биологических cистем существенно зависит от температурного уровня окружающей среды. В первую очередь это касается организмов, не способных поддерживать постоянную температуру тела (все растения и многие животные). Именно у таких организмов (пойкилотермных) повышение температуры до определенного предела значительно ускоряет физиологические процессы: темпы роста и развития (у насекомых, пресмыкающихся), прорастание семян, рост листьев и побегов, цветение и т. д.

Чрезмерное повышение температуры вызывает гибель организмов вследствие тепловой денатурации белковых молекул, необратимых изменений структуры биологических коллоидов клетки, нарушения деятельности ферментов, резкого усиления гидролитических процессов, дыхания и др. С другой стороны, заметное снижение температуры ниже О °С может вызвать гибель клеток и всего организма.

В природных условиях температура очень редко держится на уровне, благоприятном для жизни. Ответом на это является возникновение у растений и животных специальных приспособлений, которые ослабляют вредное действие колебаний температуры. Это, в частности, комплекс свойств и адаптивных приспособлений, которые формируют соответствующий уровень зимостойкости и морозоустойчивости растений.

  • Зимостойкость - стойкость растений к комплексу неблагоприятных факторов зимнего периода (чередования морозов и оттепелей, ледяной корки, вьмокания, выпревания и др.). Обусловливается и обеспечивается переходом растений в состояние органического покоя, размещением почек в защищенных местах, накоплением энергетического материала (крахмала, жиров), сбрасыванием листьев, адаптивными реакциями организмов.
  • Морозоустойчивость - способность клеток, тканей и целых растений без повреждений переносить действие морозов. Благодаря многим физиолого-биохимическим приспособлениям и свойствам у морозоустойчивых растений образование льда происходит при более низкой температуре, чем у менее морозоустойчивых, и сопровождается меньшими повреждениями.
  • Холодостойкость - свойство ранневесенних растений (эфемеров и эфемероидов) успешно произрастать при низких плюсовых температурах. Этот термин используется также для характеристики теплолюбивых растений (кукуруза, огурцы, арбузы).

Зимо- и морозоустойчивость характерны для растений только в зимний период, когда они успели закалиться и перейти в состояние покоя. В период же вегетации (летом) все растения не способны выдерживать даже кратковременное воздействие небольших морозов.

  • Закаливание растений - формирование у растений способности успешно выдерживать неблагоприятные условия под влиянием специфических условий осеннего времени года. Имеет двухфазный характер. Во время первой происходит накопление углеводов, перераспределение питательных веществ между органами, чему способствует относительно теплая и солнечная погода. Во второй фазе при постепенном снижении температуры увеличивается количество осмотически активных веществ в вакуолях, уменьшается количество воды, изменяется состояние цитоплазмы - растения переходят в состояние покоя.
  • Состояние покоя - качественно новый этап растительного организма, в который переходят зимующие растения с наступлением неблагоприятных условий. Характеризуется прекращением видимого роста и сведением к минимуму жизнедеятельности, отмиранием и опадением листьев и надземных органов травянистых многолетников, образованием чешуек на почках, толстого слоя кутикулы и коры на стеблях. В тканях и клетках накопляются ингибиторы, которые тормозят ростовые и формообразовательные процессы, что делает растения неспособными к прорастанию даже в самых благоприятных искусственно созданных условиях, а также во время случайных осенних и ран незимних потеплений.

Различают период (состояние) глубокого, или органического покоя, обусловленного соответствующей подготовкой и внутренним ритмом развития растительного организма, и период вынужденного покоя, в котором растения пребывают после глубокого покоя, когда их рост вынужденно сдерживается еще неблагоприятными условиями - низкой температурой, недостатком питательных веществ. Вынужденный покой легко прервать, создав растению благоприятные условия.

Из состояния глубокого покоя растения выходят с трудом, так как длительность его у большинства из них значительна - до конца января - февраля. Выход растений из этого состояния возможен только после его окончания и свершения в организме соответствующих биохимических и физиологических превращений, вызванных влиянием периода минусовых температур определенной длительности. После окончания периода покоя в растениях заметно увеличивается количество нуклеиновых кислот, исчезают ингибиторы роста и появляются ауксины - стимуляторы ростовых процессов.

Способность переходить в состояние покоя - необходимый этап онтогенеза растений, внутренне обусловленный ритмичностью физиолого-биохимических процессов. Это свойство возникло у растений в процессе эволюции как приспособительная реакция в ответ на периодические изменения температурных условий внешней среды.

Многие растения переходят в состояние покоя не только зимой, но и в летнее время. Это ранневесенние цветущие растения (тюльпаны, крокусы, пролески). Большое количество растений тропических районов, пустынь и полупустынь также переходит в состояние летнего покоя. Состояние покоя разной длительности характерно и для свежесобранных семян и плодов, клубней, луковиц, корнеплодов.

Существуют методы и приемы, с помощью которых можно вывести растения из состояния глубокого покоя. Это теплые ванны (37-39° С), обработка парами эфира, накалывание основы почек иглой и др.

14 По сравнению с растениями животные обладают более разнообразными возможностями регулировать температуру тела, а именно:

  • путем химической терморегуляции - активным изменением величины теплопродукции повышением метаболизма;
  • путем физической терморегуляции - изменением уровня теплоотдачи на основе развития теплозащитных покровов, особыми устройствами крoвеносной системы, распределением жировых запасов, особенно в бурой жировой ткани и т. п.

Кроме того, некоторые особенности поведения животных также cпособствуют существованию их в изменчивых условиях среды: выбор места с благоприятными микроклиматическими условиями - зарывание в песок, в норки, под камни (животные жарких степей и пустынь), активность в определенный период суток (змеи, тушканчики, суслики), сооружение хранилищ, гнезд и др.

Одно из самых важных прогрессивных приспособлений - способность к терморегуляции организма у млекопитающих и птиц, их теплокровность. Благодаря этому экологически важному приспособлению высшие животные относительно независимы от температурных условий среды.

Важное значение для поддержания температурного баланса имеет отношение поверхности тела к его объему, так как количество выработанного тепла зависит от массы тела, а теплообмен осуществляется через покровы.

На связь размеров и пропорций тела животных с температурно-климатическими условиями указывает правило Бергмана, согласно которому из двух близких видов теплокровных, отличающихся размерами, более крупный обитает в более холодном климате, а также правило Аллепа, по которому у многих млекопитающих и птиц северного полушария относительные размеры конечностей и других выступающих частей (ушей, клювов, хвостов) увеличиваются к югу и уменьшаются к северу (для уменьшения теплоотдачи в холодном климате).

 

15 Первоначально все организмы были водными. Завоевав сушу, не утратили зависимости от воды. Составной частью всех живых организмов является вода. Влажность — это количество водяного пара в воздухе. Без влажности или воды нет жизни.

Влажность - это параметр характеризующий содержание водяного пара в воздухе. Абсолютная влажность - это количество водяного пара в воздухе и зависит от температуры и давления. Это количество называется относительной влажностью (т.е. соотношение количества водяного пара в воздухе к насыщенному количеству пара при определенных условиях температуры и давления.)

В природе существует суточный ритм влажности. Влажность колеблется по вертикали и горизонтали. Этот фактор наряду со светом и температурой играет большую роль в регулировании активности организмов и их распространении. Влажность изменяет и эффект температуры.

Важным экологическим фактором является иссушение воздуха. Особенно для наземных организмов, имеет огромное значение иссушающие действие воздуха. Животные приспосабливаются, передвигаясь в защищенные места и активный образ жизни ведут ночью.

Растения поглощают воду из почвы и почти полностью (97-99%) испаряется через листья. Этот процесс называется транспирацией. Испарение охлаждает листья. Благодаря испарению идет транспорт ионов, через почву к корням, транспорт ионов между клетками и т.д.

Определенное количество влажности совершенно необходима для наземных организмов. Многие из них для нормальной жизнедеятельности нуждаются в относительной влажности 100%, и наоборот организм находящийся в нормальном состоянии, не может жить долгое время в абсолютно сухом воздухе, ибо он постоянно теряет воду. Вода есть необходимая часть живого вещества. Поэтому потеря воды в известном количестве приводит к гибели.

Растения сухого климата приспосабливается морфологическими изменениями, редукцией вегетативных органов, особенно листьев.

Наземные животные также приспосабливаются. Многие из них пьют воду, другие всасывают ее через покровы тела в жидком или парообразном состоянии. Например, большинство амфибий, некоторые насекомые и клещи. Большая часть животных пустынь никогда не пьет, они удовлетворяют свои потребности за счет воды, поступившей с пищей. Другие животные получает воду в процессе окисления жиров.

Вода для живых организмов совершенно необходима. Поэтому организмы распространяются по местообитанию в зависимости от своих потребностей: водные организмы в воде живут постоянно; гидрофиты могут жить только в очень влажных средах.

С точки зрения экологической валентности гидрофиты и гигрофиты относятся к группе стеногигров. Влажность сильно влияет на жизненные функции организмов, например, 70% относительная влажность была очень благоприятным для полевого созревания и плодовитости самок перелетной саранчи. При благоприятном размножении они причиняют огромный экономический урон посевам многих стран.

Для экологической оценки распространения организмов пользуются показателем сухости климата. Сухость служит селективным фактором для экологической классификации организмов.

Таким образом, в зависимости от особенностей влажности местного климата виды организмов распределяются по экологическим группам:

1. Гидатофиты — это водные растения.

2. Гидрофиты — это растения наземно-водные.

3. Гигрофиты — наземные растения живущие в условиях повышенной влажности.

4. Мезофиты — это растения, произрастающие при среднем увлажнении

5. Ксерофиты — это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на: суккуленты — сочные растения (кактусы); склерофиты — это растения с узкими и мелкими листьями, и свернутыми в трубочки. Они также делятся на эуксерофиты и стипаксерофиты. Эуксерофиты — это степные растения. Стипаксерофиты — это группа узколистных дерновинных злаков (ковыль, типчак, тонконог и др.). В свою очередь мезофиты также делятся на мезогигрофиты, мезоксерофиты и т.д.

Уступая по своему значению температуре, влажность относится тем не менее к основным экологическим факторам. На протяжении большей части истории живой природы органический мир был представлен исключительно водными нормами организмов. Составной частью огромного большинства живых существ является вода, и для осуществления размножения или слияния гамет почти все они нуждаются в водной среде. Сухопутные животные вынуждены создавать в своем теле искусственную водную среду для оплодотворения, а это приводят к тому, что последнее становится внутренним.

Влажность - это количество водяного пара в воздухе. Его можно выразить в граммах на кубический метр.

 

16 Таким образом, в зависимости от особенностей влажности местного климата виды организмов распределяются по экологическим группам:

1. Гидатофиты — это водные растения.

2. Гидрофиты — это растения наземно-водные.

3. Гигрофиты — наземные растения живущие в условиях повышенной влажности.

4. Мезофиты — это растения, произрастающие при среднем увлажнении

5. Ксерофиты — это растения произрастающие с недостаточным увлажнением. Они в свою очередь делятся на: суккуленты — сочные растения (кактусы); склерофиты — это растения с узкими и мелкими листьями, и свернутыми в трубочки. Они также делятся на эуксерофиты и стипаксерофиты. Эуксерофиты — это степные растения. Стипаксерофиты — это группа узколистных дерновинных злаков (ковыль, типчак, тонконог и др.). В свою очередь мезофиты также делятся на мезогигрофиты, мезоксерофиты и т.д.

 

17 Ионизи́рующее излуче́ние — в самом общем смысле — различные виды микрочастиц и физических полей, способные ионизировать вещество. В более узком смысле к ионизирующему излучению не относят ультрафиолетовое излучение и излучение видимого диапазона света, которое в отдельных случаях также может быть ионизирующим. Излучение микроволнового и радиодиапазонов не является ионизирующим.

При изучении действия излучения на организм были определены следующие особенности:

  1. Высокая эффективность поглощенной энергии.
    Малые количества поглощенной энергии излучения могу вызвать глубокие биологические изменения в организме.
  2. Наличие скрытого, инкубационного, периода проявления действия ионизирующего излучения.
    Этот период часто называют периодом мнимого благополучия. Продолжительность его сокращается при облучении в больших дозах.
  3. Действие от малых доз может суммироваться или накапливаться.
    Этот эффект называется кумуляцией.
  4. Излучение действует не только на данный живой организм, но и на его потомство.
    Это так называемый генетический эффект.
  5. Разные органы живого организма имеют свою чувствительность к облучению.
  6. Не каждый организм в целом одинаково реагирует на облучение.
  7. Облучение зависит от частоты.

 

18 Исследования, проведенные в последние 40 лет, показали, что наши представления о пожаре как экологическом факторе требуют решительного пересмотра. Стало ясно, что пожар — не малозначащий или аномальный, а важный фактор, который издавна является, можно сказать, частью «климата» в большинстве наземных местообитаний. Соответственно биотические сообщества компенсируют этот фактор и адаптируются к нему, так же как к температуре или воде. Как и в большинстве случаев, человек сильно изменил влияние этого фактора, либо усилив его, либо ослабив. Нежелание признать тот факт, что экосистемы способны «адаптироваться к пожару», часто приводило к неправильному использованию природных ресурсов. При правильном использовании огонь может быть очень ценным экологическим инструментом. Пожар является крайне важным лимитирующим фактором хотя бы потому, что человек способен его контролировать в значительно большей степени, чем многие другие лимитирующие факторы.

При обсуждении пожаров как экологического фактора прежде всего следует подчеркнуть, что в природе известно несколько типов пожаров, различных по действию. На фиг. 58 и 59 показаны два противоположных типа — верховые и низовые. Верховые пожары часто уничтожают всю растительность; они оказывают лимитирующее действие на большинство организмов; биотическому сообществу приходится начинать все сначала, с исходных позиций, и должно пройти много лет, пока участок снова станет продуктивным с точки зрения человека. Низовые пожары, напротив, обладают избирательным действием, способствуя развитию организмов с большой устойчивостью к огню. Кроме того, небольшие низовые пожары стимулируют разлагающее действие бактерий на отмершие растения и превращение минеральных питательных веществ в форму, доступную новым поколениям растений. Азотфик-сирующим бобовым небольшой пожар часто полезен. Там, где вероятность возникновения пожаров особенно велика, небольшие периодические низовые пожары значительно ослабляют опасность возникновения страшных верховых пожаров, сводя к минимуму количество горючей лесной подстилки. Как указывалось в гл. 2, разд. 3, пожар вместе с антибиотиками растительного происхождения часто вызывает ритмичные изменения растительности (циклический климакс), выражающиеся в поочередной стабилизации и обновлении первичной продукции и видового разнообразия. Осматривая участки в тех районах, где пожар может быть фактором среды, эколог обычно находит следы прошлых пожаров. Решение вопроса о том, целесообразно ли в дальнейшем использовать пожар как фактор управления средой, целиком зависит от того, какой тип сообщества на этом участке желателен с точки зрения землепользования в данном районе.

19 Экологическая классификация организмов не имеет единой схемы, поскольку у организмов много различных путей адаптаций. В систематике критерием классификации является филогенетическое единство. В основу экологической классификации могут быть положены различные критерии. Например, в основу экологической классификации растений Теофраст Ерезийський (372-287 до н.э.) положил жизненную форму, разделив все растения на деревья, кустарники и травы. Датский ботаник Э. Варминг в 1884 году ввел понятие «жизненная форма» и разделил все растения на деревья, кустарники, наземные, травянистые, водные растения. По отношению к воде растения можно поделить на: гидатофиты, гигрофиты, мезофиты, ксерофиты.

Существует очень много экологических классификаций животных. Например, наземные, обитающие на деревьях, в почве, воде и т.д.

 

20 Плавающие формы животных
Чисто водные:
a) нектон, б) планктон, в) бентос
Полуводные:
ныряющие, б) неныряющие, в) лишь добывающие из воды пищу
Роющие формы животных
Абсолютные землерои (всю жизнь проводящие под землей)
Относительные землерои (выходящие на поверхность)
. Наземные формы животных
Не делающие нор:
a) бегающие, б) прыгающие, в) ползающие
Делающие норы:
a) бегающие, б) прыгающие, в) ползающие
Животные скал
. Древесные лазающие формы животных
a) не сходящие с деревьев, б) лишь лазающие по деревьям
Воздушные формы
a)добывающие пищу в воздухе, б) высматривающие пищу с воздуха.

21 Жи́зненная фо́рма расте́ний, биологи́ческая фо́рма, биомо́рфа — внешний облик растений (габитус), отражающий их приспособленность к условиям среды. Термин предложен датским ботаником Эугениусом Вармингом в 1884 году, понимавшим под ним «форму, в которой вегетативное тело растения находится в гармонии с внешней средой в течение всей жизни, от семени до отмирания».[1]

В процессе индивидуального развития (онтогенезе) внешний облик растения меняется. Среди факторов, которые влияют на это изменение можно выделить как внешние (окружающая среда), так и внутренние, заложенные в генетическом коде. Несмотря на разнообразие жизненных форм растений, можно выделить некоторые общие критерии, на основании которых множество жизненных форм будет разбито на группы.

Первую классификацию основных форм растений по их внешнему облику разработал немецкий естествоиспытатель А. Гумбольдт. Она насчитывала 19 основных форм и была опубликована в 1806 году. Критерии этой классификации основывались на физиономических характеристиках растений. За этой классификацией последовали другие: А. Кернера (1863), А. Гризебаха (1872), О. Друде (1913) — в них кроме физиономических параметров в расчёт принимались и другие характеристики.

В ходе дальнейшего развития появились классификации, основанные на ряде специальных приспособительных признаков: положении почек и характере защитных почечных покровов (К. Раункиер, 1905, 1907), способу вегетативного размножения (Г. Н. Высоцкий (1915), Л. И. Казакевич (1922).

Советский ботаник И. Г. Серебряков предложил (1962, 1964) классификацию, основанную на структуре и длительности жизни надземных скелетных осей растений.

 

22 -

23 - знаю

24 - знаю

25 - знаю

26 - знаю

27 Популяция представляет собой не хаотическое скопление особей, а устойчивое, имеющее определённую структуру образование. Особи популяции различаются по возрасту, полу, генотипу. но тесно связаны между собой. Большинство связей направлено на воспроизводство популяции, что определяется, прежде всего, взаимоотношениями между полами и возрастными группами. Длительное устойчивое существование популяции зависит от численности особей в ней. Однако численность для каждого вида различна, напр., численность популяции африканского слона может быть в несколько десятков особей, а атлантической сельди – в несколько тысяч. Численность популяции постоянно колеблется, но популяция не может длительно существовать, если её численность будет ниже некоторого предела, характерного для каждого вида. Внутри популяции случайное свободное скрещивание и «перемешивание» генофонда осуществляется легче и чаще, чем между различными территориально разобщёнными популяциями. Поэтому генотипическое сходство внутри популяции гораздо выше, чем за её пределами. Оно нарушается при возникновении у отдельных особей наследственных изменений (мутаций), которые в результате свободного скрещивания распространяются в популяции, что ведёт к её генетической гетерогенности (разнородности) и создаёт условия для действия естественного отбора. Таким образом, эволюционный процесс начинается с элементарных генетических событий в популяциях – микроэволюций. которые лежат в основе макроэволюционных процессов.

 

28 Пространственная структура популяций выражается в закономерном размещении особей и их группировок по отношению к определенным элементам ландшафта и друг к другу и отражает свойственный виду тип использования территории. Закономерное размещение особей в пространстве имеет большое биологическое значение, являясь, по существу, основой всех форм нормальной жизнедеятельности популяций. Прежде всего, оно определяет наиболее эффективное использование ресурсов среды – кормовых, защитных, микроклиматических и др. Пространственная структурированность популяций служит основой устойчивого поддержания необходимого уровня внутривидовых (внутрипопуляционных) контактов между особями.

Типы пространственного распределения. Равномерный, характеризуется равным удалением каждой особи от всех соседних; величина расстояния между особями соответствует порогу, за которым начинается взаимное угнетение. То есть этот тип распределения в наибольшей степени соответствует задаче полного использования ресурсов при минимальной степени конкуренции (в природе такой тип встречается достаточно редко). Например, одновидовые заросли некоторых растений, в уплотненных популяциях некоторых сидячих беспозвоночных. Диффузный тип распределения, особи распределены в пространстве неравномерно, случайно. Расстояние между особями неодинаковы, что определяется, с одной стороны, вероятностными процессами, а с другой – определенной степенью неоднородности среды (характерно для растений и многих животных). Агрегированный (мозаичный) тип распределения выражается в образовании группировок особей, между которыми остаются достаточно большие незаселенные территории. Биологически это связано либо с резкой неоднородностью среды, либо с выраженной социальной структурой, действующей на основе активного сближения особей (особенно характерно для высших животных). Широко распространено групповое (контагиозное) распределение элементов в популяциях высших растений.

 

29 ДЕМОГРАФИЧЕСКАЯ СТРУКТУРА ПОПУЛЯЦИИ, генетически обусловленная структура популяции, специфичная для каждого вида. Д. с. п. включает в себя возрастную и половую структуры. По сравнению с последней возрастная структура оказывает влияние как на рождаемость, так и на смертность. В каждой популяции можно выделить три экологии, возраста (Bodenheimer, 1938): 1) пререпродуктивный (до половой зрелости), 2) репродуктивный (половая зрелость),3) пострепродуктивный (доминирование старых, не способных к размножению особей). Длительность этих возрастов относительно продолжительности жизни у разных организмов сильно варьирует. А. Лотка (1925) показал, что в популяции имеет место тенденция к установлению стабильной возрастной структуры и что если это стабильное состояние из-за временного притока или оттока особей в др. популяцию нарушается, то при восстановлении нормальных условий возрастная структура вновь будет стремиться достигнуть прежнего состояния; более устойчивые изменения должны привести к возникновению нового стабильного распределения возрастов. Наибольший успех в природе будет иметь та.популяция, к-рая представлена всеми возрастными группами в наиболее оптимальном соотношении. Соотношение различных возрастных групп в популяции (а также степень благоприятности среды) определяет ее способность к размножению в данный момент и показывает, что можно ожидать в будущем. Обычно в быстро растущих популяциях значительную часть составляют молодые особи, в стабильных популяциях распределение возрастных групп более равномерно, а в популяциях с уменьшающейся численностью больше старых особей. Однако возрастная структура популяции может меняться и без изменения ее численности. Для каждой популяции характерна нек-рая нормальная, или стабильная, возрастная структура, к достижению к-рой направлены все ее усилия. Соотношение возрастных групп (классов) графически обычно представляется в виде возрастных пирамид.

30 Биотический потенциал в экологии, способность вида противостоять неблагоприятным воздействиям внешней среды. Термин введён американским экологом Р. Чепменом (1925) в связи с проблемой динамики численности животных. По Чепмену, Б. п. — количественное выражение способности организмов противостоять сопротивлению внешней среды. Согласно его теории, потенциальная плодовитость животных не реализуется, поскольку она подавляется односторонним воздействием внешней среды, с которой организмы находятся в антагонистических отношениях. По современным воззрениям, такая точка зрения выглядит упрощённой. Изменения плодовитости и выживания животных происходят как под влиянием абиотических факторов, так и в результате межвидовых и внутривидовых взаимоотношений. Большую роль в этих процессах играют внутрипопуляционные механизмы, обеспечивающие активную реакцию популяции на внешние воздействия.

Основными показателями структуры популяций является численность и распределение организмов в пространстве и соотношение разнокачественных особей. В связи с размерами ареала популяций может значительно изменяться и численность особей в популяциях.

Численность популяции — это общее количество особей на данной территории или в данном объеме. Зависит от соотношения интенсивности размножения (плодовитости) и смертности. В период размножения происходит рост популяции. Смертность же, наоборот, приводит к сокращению ее численности.

Плотность популяции определяется количеством особей или биомассой на единицу площади либо объема

 

31 Если воздействия модифицирующих факторов приводят лишь к преобразованиям (модификациям) колебаний численности, не устраняя их, то регулирующие факторы, выравнивая случайные отклонения, стабилизируют (регулируют) численность на определенном уровне. Регулирующие факторы связаны с существованием и активностью живых организмов (биотические факторы), поскольку лишь живые существа способны реагировать на плотность своей популяции и популяций других видов по принципу отрицательной обратной связи

32 Сколько человек может прокормить Земля? Есть много мнений, от самых пессимистических (1 млрд. и меньше) до очень оптимистических. Академик Сергей Петрович Капица считает, что «при разумных предположениях Земля может поддерживать в течение длительного времени до 15 — 25 миллиардов людей».

33 Биогеоценоз (от греч. βίος — жизнь γη — земля + κοινός — общий) — система, включающая сообщество живых организмов и тесно связанную с ним совокупность абиотических факторов среды в пределах одной территории, связанные между собой круговоротом веществ и потоком энергии (природная экосистема). Представляет собой устойчивую саморегулирующуюся экологическую систему, в которой органические компоненты (животные, растения) неразрывно связаны с неорганическими (вода, почва). Примеры: сосновый лес, горная долина. Учение о биогеоценозе разработано Владимиром Сукачёвым в 1940 году. БИОТОП

(от био... и греч. topos — место), естественное, относительно однородное жизненное пространство определенного биоценоза. Биотоп включает в себя минеральные и органические вещества, климатические факторы, свет, давление и движение среды, влажность, рН среды, механические и физико-химические свойства субстрата, который может быть твердым (почва, дно водоема), жидким (вода), газообразным (атмосфера). Между биоценозом и биотопом, вместе образующими экосистему (биогеоценоз), существует тесное взаимодействие, основанное на постоянном обмене веществами, энергией и информацией. Биоценоз “питается” положительной энтропией биотопа, постоянно стремясь превратить ее в негэнтропию. Гомеостаз между биоценозом и биотопом является залогом устойчивости экосистемы. В результате естественного (оледенение, извержение вулканов, землетрясение, дрейф материалов, тектонические процессы и др.) или антропогенного разрушения биотопа экосистема перестает существовать. Близок к понятию “экотоп”. Многие авторы (ошибочно) отождествляют понятие “биотоп” с понятием “местообитание”.

Несколько раньше, чем Сукачев разработал представление о биогеоценозе, в 1935 г., английским ботаником А. Тенсли был введен термин «экосистема».

Экосистема, по А. Тенсли, – «совокупность комплексов организмов с комплексом физических факторов его окружения, т. е. факторов местообитания в широком смысле». Для экосистем характерен разного рода обмен не только между организмами, но и между организмами и средой их обитания, иначе называемый круговоротом веществ. Эти же качества присущи и биогеоценозу.

Наиболее заметные изменения в состоянии биосферы, нарушения экологического равновесия происходят на уровне биогеоценоза. Поэтому большинство ученых в частности Ю. Одум (1975, 1986) и не считают отличия между понятиями "биогеоценоз" и "экосистема" существенными, ставят знак равенства между приведенными понятиями, подразумевая под экосистемой биоценоз, образующий вкупе с биотопом (экотопом) биогеоценоз. Это оправданно еще и тем, что термин «экосистема» широко применяется в смежных науках, особенно природоохранного содержания.

Однако ряд российских ученых не разделяют этого мнения, видя определенные отличия биогеоценоза от экосистемы.

Выделяют по размерам следующие типы экосистем:

  • микроэкосистемы (подушка лишайника и т. п.);
  • мезоэкосистемы (пруд, озеро, степь и др.);
  • макроэкосистемы (континент, океан) и, наконец,
  • глобальная экосистема, или экосфера – совокупность всех экосистем мира (биосфера Земли).

Биогеоценозу из перечисленного соответствует среднее положение между микро- и мезоэкосистемой. Он представляет элементарную единицу биосферы; это наименьшая единица, в которой осуществляются в биосфере вещественно-энергетический круговорот. Ни одна из частей биогеоценоза не в состоянии полностью осуществить этот круговорот.

Различия между экосистемой и биогеоценозом можно свести к следующим положениям:

1) биогеоценоз - понятие территориальное, относится к конкретным участкам суши и имеет определенные границы, совпадающие с границами фитоценоза. Характерная особенность биогеоценоза, на которую указывают Н.В. Тимофеев-Ресовский, А.Н. Тюрюканов (1966) – через территорию биогеоценоза не проходит ни одна существенная биоценотическая, почвенно-геохимическая, геоморфологическая и микроклиматическая граница.

- понятие экосистемы шире, чем понятие биогеоценоза; оно применимо к биологическим системам разной сложности и размеров; экосистемы часто не имеют определенного объема и строгих границ;

2) в биогеоценозе органическое вещество всегда продуцируют растения, поэтому основной компонент биогеоценоза – фитоценоз;

- в экосистемах органическое вещество не всегда создается живыми организмами, нередко поступает извне.

(приносится течением – озеро, море; вносится человеком – сельскохозяйственные угодья, переносится ветром или осадками – растительные остатки на эродированных склонах гор).

3) биогеоценоз потенциально бессмертен;

- существование экосистемы может закончиться с прекращением прихода в нее вещества или энергии.

4) экосистема может быть и наземным и водным образованием;

- биогеоценоз всегда наземная или мелководная экосистема.

5) – в биогеоценозе всегда должен быть единый эдификатор (эдификаторная группировка или синузия), определяющий всю жизнь и строй системы.

- В экосистеме их может быть несколько.

На ранних стадиях развития экосистема склона – это будущий лесной ценоз. Она состоит из группировок организмов с разными эдификаторами и довольно неоднородными условиями среды. Лишь в будущем на одну и ту же группировку могут оказывать влияние не только её эдификатор, но и эдификатор ценоза. И второй будет основным.

Таким образом, не каждая экосистема является биогеоценозом, но каждый биогеоценоз – экосистема, полностью соответствующая определению Тенсли.

 

34 Основная функция БЦ (поддержание круговорота веществ в биосфере) базируется на пищевых взаимоотношениях видов, благодаря чему органические вещества, синтезированные автотрофами, многократно химически изменяются и в конечном итоге возвращаются в среду в виде неорганических продуктов жизнедеятельности, вновь вовлекаемых в круговорот.

Любой БЦ вкл. продуцентов, консументов, редуцентов. Функционально все виды в БЦ распределяются на несколько групп в зависимости от их места в общей системе круговорота веществ и потока энергии, равнозначные в этом смысле виды, образуют определенный трофический уровень, а взаимодействие между видами разных уровней - систему цепей питания. Совокупность троф. цепей, включая прямые и косвенные взаимодействия составляющих их видов, формирует трофическую структуру БЦ.

 

35 Под видовой структурой биоценоза понимают разнообразие в нем видов и соотношение их численности или массы. Каждый конкретный биоценоз характеризуется строго определенным видовым составом. Везде, где условия абиотической среды приближаются к оптимальным для жизни, возникают богатые видами сообщества со своей структурой, например тропические леса, коралловые рифы, долины рек в аридных районах и др. Увеличение видового разнообразия по мере продвижения с севера на юг было сформулировано А. Уоллесом в 1859 г. и получило название правило Уоллеса. Оно касается как видов, так и составленная ими структура сообществ биоценоза. Видовой состав биоценоза зависит как от длительности их существования, так и истории каждого биоценоза. Так же много зависит от структуры биоценоза.
Молодые, формирующиеся сообщества, как правило, имеют меньший набор видов, чем давно сложившиеся, зрелые. Биоценозы, созданные человеком (огороды, сады, поля и т. д.), обычно беднее видами по сравнению со сходными с ними природными системами (лесными, луговыми, степными). Однако даже самые обедненные биоценозы включают несколько десятков видов организмов, которые принадлежат к разным систематическим и экологическим группам. При этом одни виды биоценоза могут быть представлены многочисленными популяциями, а другие малочисленными. Отсюда следует, что в любом биоценозе можно выделить один или несколько видов, определяющих его облик. ЭДИФИКАТОРЫ — (от лат. aedificator строитель) виды растений в растительном сообществе, определяющие его особенности.

36 Виды в биоценозе образуют и определенную пространственную структуру, особенно в его растительной части — фитоценозе. Прежде всего четко определяется вертикальное ярусное строение в лесах умеренного и тропического поясов. Например, в широколиственных лесах можно выделить 5—6 ярусов: первый — деревья первой величины (дуб, липа, вяз); второй — деревья второй величины (рябина, яблоня, груша, черемуха и др.); третий — подлесок кустарниковый (крушина, жимолость, бересклет и др.); четвертый состоит из высоких трав, а пятый и шестой, соответственно, из более низких трав (рис. 4.2). Ярусность позволяет растениям более полно использовать световой поток — в верхних ярусах светолюбивые, в нижних — теневыносливые и, в самом низу, улавливают остаток света тенелюбивые растения. Ярусность выражена и в травянистых * сообществах, но не столь явно, как в лесах.
В вертикальном направлении, под воздействием растительности, изменяется микросреда, включая не только выравнен-ность и повышение температуры, но и изменение газового состава за счет изменений направления потоков углекислого газа ночью и днем, выделения сернистых газов хемосинтезирую-щими бактериями и т. п. Изменения микросреды способствуют образованию и определенной ярусности фауны — от насекомых, птиц и до млекопитающих Помимо ярусности в пространственной структуре биоценоза наблюдается мозаичность -— изменение растительности и животного мира по горизонтали. Площадная мозаичность зависит от разнообразия видов, количественного их взаимоотношения, от изменчивости ландшафтных и почвенных условий. Мозаичность может возникнуть и искусственно —- в результате вырубки лесов человеком. На вырубках формируется новое сообщество.
Видовая структура биоценозов, пространственное распределение видов в пределах биотопа, во многом определяется взаимоотношениями между видами, между популяциями.

37 Видовая насыщенность биоценоза - общее число видов, приходящаяся на единицу площади. В зависимости от видовой насыщенности различают биоценозы простые и сложные.
В сложных биоценозах большое количество видов и взаимосвязи между ним сложные. Причем, в самых богатых в видовом отношении биоценозах практически все виды малочисленные. Так, в тропических лесах, которые имеют значительную флористическую насыщенность, редко можно встретить рядом несколько деревьев одного вида. Все это обусловливает формирование достаточно сложных биотических связей. В таких условиях не бывает массового размножения отдельных видов, биоценозы характеризуются высокой стабильностью.
Видовая насыщенность зависит от климатических и эдафичным условий. Так, биоценозы тундры и пустыни охватывают значительно меньшее количество вы дев, чем биоценозы влажных тропических лесов. Большую флористическую насыщен ность имеют влажные тропические леса.

38 Скорость фиксации солнечной энергии определяет продукцию биоценозов. Основной показатель продукции — биомасса организмов (растительных и животных), составляющих биоценоз.

Биомассавыраженное в единицах массы или энергии количество живого вещества организмов, приходящееся на единицу площади или объема

Продукция. Биологической продукцией называется биомасса, производимая биоценозом на единице площади за единицу времени. Она выражается в тех же величинах, что и биомасса, но с указанием времени, за которое она создана (например, кг/га за месяц).

Различают два вида продукции — первичную и вторичную.

Биомасса, произведенная автотрофными организмами (зелеными растениями) на единице площади за единицу времени, называется первичной продукцией. Ее величина определяет продуктивность всех звеньев гетеротрофных организмов экосистемы.

Суммарная продукция фотосинтеза называется первичной валовой продукцией. Это вся химическая энергия в форме произведенного органического вещества. При этом часть энергии может идти на поддержание жизнедеятельности (дыхание) самих производителей продукции — растений. Если мы изымем ту часть энергии, которая тратится растениями на дыхание, то получим чистую первичную продукцию.

 

39 На границе атмо-, гидро- и литосферы сконцентрирована наибольшая масса живого вещества планеты, и эта земная оболочка названа биостромом (биогеосферой),или пленкой жизни. Только в ее пределах возможны жизнедеятельность и существование человека. Синонимами биогеосферы являются «эпигенема» (Р.И. Аболин), «витасфера» - сфера жизни (А.Н. Тюрюканов и В.Д. Александров), «биостром», «фитогеосфера» (Е.М. Лавренко), «фитосфера» (В.Б. Сочава), «биогеоценотический покров» (В.Н. Сукачев) и другие близкие по содержанию термины. На суше существуют две пленки жизни – наземная и почвенная. Наземная пленка (наземный биостром) находится на поверхности почвы и полностью включает растительный покров (фитостром) и животное население суши (зоостром и микробиостром). Почвенная пленка приурочена к тонкому поверхностному слою литосферы, преобразованному почвообразующими процессами. С позиций анализа структурных частей ГО почва представляет верхний преобразованный биостромом слой современной коры выветривания. Она – вместилище подземной части биострома, место сосредоточения корневых систем и среда обитания богатой и разнообразной фауны – от крота и слепыша, до множества беспозвоночных и микроорганизмов. На суше пленки жизни имеют непосредственный контакт, и резкой границы между ними не существует. Экотон - переходная полоса между легко физиологически отличимыми сообществами. Обычно экотоны населены организмами значительно гуще, чем сами контактирующие сообщества.

40 Организмы разных видов в биоценозах находятся в постоянном взаимодействии друг с другом. Существуют две основные формы межвидовых взаимодействий: антибиоз и симбиоз.

Антибиоз — невозможность сосуществования двух видов организмов, основанная на конкуренции прежде всего за источники питания. Примером служат взаимоотношения сапрофитных бактерий и ряда плесневых грибов. Первые способны быстро заселять среды, богатые органическими веществами, за счет интенсивного размножения, а вторые, значительно уступая им в этом, приобрели способность делать субстрат неблагоприятным для жизнедеятельности бактерий, выделяя в него продукты своего метаболизма — антибиотики. В результате среда используется либо грибами, либо бактериями, успевшими попасть в нее и размножиться раньше.

Симбиоз в переводе с греческого означает «сожительство». Формы симбиоза разнообразны. В некоторых случаях отношения между организмами разных видов являются взаимополезными настолько, что раздельное их существование вообще невозможно. Такой симбиоз называют мутуализмом.

 

41 Экологическая пирамида — графические изображения соотношения между продуцентами и консументами всех уровней (травоядных, хищников, видов, питающихся другими хищниками) в экосистеме. Эффект пирамид в виде графических моделей разработан в 1927 году Ч. Элтоном[1].

Выражается:

  • в единицах массы (пирамида биомасс),
  • в числе особей (пирамида чисел Элтона)
  • в заключенной в особях энергии (пирамида энергий).

 

42 Все биоценозы, независимо от их сложности, динамичны, в них постоянно происходят изменения в состоянии и жизнедеятельности его членов и соотношении популяций. Эти изменения можно свести к двум основным типам: циклическим и поступательным.
Циклический тип изменения сообществ отражает суточную. Сезонную и многолетнюю периодичность внешних условий и проявления эндогенных (внутренних) ритмов организмов. Суточная динамика биоценозов преимущественно связана с ритмами природных явлений и характеризуется строгой периодичностью.
При сезонной динамике наблюдаются более существенные отклонения в биоценозах. Они определяются биологическими циклами организмов, которые зависят от сезонной цикличности природных явлений. Смена времен года в значительной степени влияет на жизнедеятельность растений и животных (периоды цветения, плодоношения, активного роста, осеннего листопада и зимнего покоя у растений; спячка, зимний сон, диапауза и миграции у животных).
Нормальным явлением в жизни любого биоценоза служит и многолетняя изменчивость. Последняя обусловлена изменением по годам метеорологических условий (климатических флюктуаций) или других внешних факторов, которые влияют на сообщество (например, разливы рек). Помимо этого, многолетняя периодичность часто бывает связана с особенностями жизненного цикла растений-эдификаторов, с повторением массовых размножений животных, насекомых или патогенных для растений микроорганизмов.

43 Сукцессия (от лат. succesio — преемственность, наследование) — последовательная необратимая и закономерная смена одного биоценоза (фитоценоза, микробного сообщества, биогеоценоза и т. д.) другим на определённом участке среды во времени. Термин введён Ф. Клементсом для обозначения сменяющих друг друга во времени сообществ, образующих сукцессионный ряд (серию) где каждая предыдущая стадия (серийное сообщество) формирует условия для развития последующего. Если при этом не происходит вызывающих новую сукцессию событий, то ряд завершается относительно устойчивым сообществом, имеющим сбалансированный при данных факторах среды обмен. Такое сообщество Ф. Клементс назвал климакс. Единственным признаком климакса в смысле Клементса—Разумовского является отсутствие у него внутренних причин для изменения. Время существования сообщества ни в коем случае не может являться одним из признаков. Широко известным примером первичной сукцессии является заселение застывшей лавы после извержения вулкана или склона после схода лавины, уничтожившей весь профиль почвы. Сейчас подобные явления редки, но каждый участок суши в какое-то время прошёл через первичную сукцессию.

44 Наряду с теорией моноклимакса существует точка зрения, в соот­ветствии с которой в одном и том же географическом районе может формироваться несколько завершающих (климаксных) экосистем (по­ликлимакс). Например, в лесной зоне наряду с еловыми и елово-лиственными лесами в качестве климаксных рассматривают также луговые экосистемы, сосновые леса. Однако сторонники моноклимакса считают, что луга в лесной зоне могут длительно существовать толь­ко в результате их использования (скашивания, выпаса). При прекра­щении таких воздействий на смену им неизбежно придут лесные со­общества. Что касается сосновых лесов, то длительное существова­ние их связывается с тем, что они занимают обычно крайне бедные (например, песчаные, щебнистые, сильно заболоченные) местообитания, где ель (более сильный эдификатор) не может внедряться и суще­ствовать вследствие более значительной требовательности к почвен­ному плодородию. Но с течением времени по мере накопления в по­чве органических веществ и необходимых для жизни минеральных элементов и эти «сосновые местообитания», с точки зрения сторонни­ков моноклимакса, будут заняты еловыми лесами, как обладающими более сильной эдификаторной способностью.

45 Биосфера (греч. bios — жизнь, sphaira — шар, сфера) — сложная наружная оболочка Земли, населенная организмами, составляющими в совокупности живое вещество планеты. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Биосфера — внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25—30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км. Особенностью этих частей является то, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды и горных пород и органического вещества — биоты обусловило формирование почв и осадочных пород. Последние, по В. И. Вернадскому, несут на себе следы деятельности древних биосфер, существовавших в прошлые геологические эпохи.

 

46 - знаю

47 - знаю

48 Биом — совокупность экосистем одной природно-климатической зоны[1].

В других источниках биом — более крупная, чем биоценоз, биосистема, включающая в себя множество тесно связанных биоценозов. Так, в определении Юджина Одума, биом — «термин, определяющий крупную региональную или субконтинентальную биосистему, характеризующуюся каким-либо основным типом растительности или другой характерной особенностью ландшафта».

Существует несколько классификаций биомов, включающих от 10 до 32 типов. Распределение биомов происходит по принципу широтной и вертикальной зональностей а также секторности.

На территории России и сопредельных стран выделяют 13 наземных биомов.

 

49 Листопадные леса - лесные участки, образованные растениями, сбрасывающими листья в неблагоприятный для вегетации период. Характерны для лесных зон умеренных климатических поясов, где представлены мелколиста, и широколиственными лесами, теряющими листву на холодное время года. В субэкваториальных и тропических поясах листопадные леса представлены сезонными тропическими (муссонными и более ксерофильными саванновыми) лесами, которые теряют листву в сухой период.

Различают:

- летнезеленые леса умеренных широт, теряющие листву на зиму;

- зимнезеленые леса тропических и субэкваториальных широт, теряющие листву на сухое время года

Тропические леса - лес в экваториальных (влажный экваториальный лес), субэкваториальных и влажнотропических районах с влажным климатом (2000—7000 мм осадков в год). В дополнение к чрезмерному выпадению осадков, влажные тропические леса характеризуются большим количеством постоянных (в противоположность мигрирующим) видов животных и огромным биоразнообразием флоры и фауны.

Во влажных тропических лесах живёт две трети всех видов животных и растений планеты. Предполагается, что миллионы видов животных и растений до сих пор не описаны. Эти леса иногда называют «драгоценностями Земли» и «самой большой аптекой мира», поскольку большое количество природных медицинских средств было найдено здесь.

Самые большие тропические дождевые леса существуют в бассейне реки Амазонки (Амазонский Тропический Лес), в Никарагуа, в южной части полуострова Юкатан (Гватемала, Белиз), в большей части Центральной Америки (где они называются «сельва»), в экваториальной Африке от Камеруна до Демократической Республики Конго, во многих районах Юго-Восточной Азии от Мьянмы до Индонезии и Папуа-Новой Гвинеи.

Тропические леса мира занимает площадь 1,7 млрд. гектар, что составляет около 37% от площади суши стран, расположенных в тропическом поясе нашей планеты. В тропическом поясе произрастают субэкваториальные муссонные леса, экваториальные влажнотропические леса, влажнотропические вечнозеленые, влажнотропические листопадные и полулистопадные леса, включая мангровые леса и саванны.

 

Бореальные леса - леса северного полушария от их северной границы с лесотундрой до средних широт, произрастающие в условиях холодного, умеренно-холодного и умеренного климата. Преимущественно хвойные, в южной части их распространения также хвойно-лиственные. Зона таких лесов выделяется в основном между 50 и 70° с. ш. в границах, примерно соответствующих июльским изотермам 13 и 18 °с. Произрастают в широтном поясе между арктической тундрой и лесами умеренного пояса. Общая площадь лесных земель бореального пояса планеты оценивается в 1,2 млрд. га, из них 0,92 млрд. гектар сомкнутых лесов, в том числе 0,64 млрд. гектар лесов, называемых эксплуатационными.

Бореальные леса произрастают в основном в Северном полушарии. Их общая площадь в Северной Америке и Евразии составляет почти 30% общей площади лесов планеты.

В целом площадь бореальных лесов составляет 82.1% общей площади лесов шести стран, на территории которых они произрастают. В Канаде бореальные леса это 75% лесов, в США (Аляска) – 88%, в Норвегии – 80%, в Швеции – 77%, в Финляндии – 98% и в России – в среднем около 67%.

 

50 Экологи́ческая ни́ша — место, занимаемое видом в биоценозе, включающее комплекс его биоценотических связей и требований к факторам среды. Термин введен в 1914 году Дж. Гриннеллом и в 1927 году Чарльзом Элтоном[1].

Экологическая ниша представляет собой сумму факторов существования данного вида, основным из которых является его место в пищевой цепочке. По Хатчинсону[2] экологическая ниша может быть:

  • фундаментальной — определяемой сочетанием условий и ресурсов, позволяющим виду поддерживать жизнеспособную популяцию;
  • реализованной — свойства которой обусловлены конкурирующими видами.

Принцип исключения Гаузе - в экологии - закон, согласно которому два вида не могут существовать в одной и той же местности, если они занимают одну и ту же экологическую нишу. В связи с этим принципом при ограниченности возможностей пространственно-временного разобщения один из видов вырабатывает новую экологическую нишу или исчезает.

 

51 Средообразующие функции живого вещества. Всю деятель­ность живых организмов в биосфере можно, с определенной долей условности, свести к нескольким основополагающим функциям, которые позволяют значительно дополнить представление об их пре­образующей биосферно-геологической роли.

В. И. Вернадский выделял девять функций живого вещества: газовую, кислородную, окислительную, кальциевую, восстановитель­ную, концентрационную и другие. В настоящее время название этих функций несколько изменено, некоторые из них объединены. Мы приводим их в соответствии с классификацией А. В. Лапо (1987).

1. Энергетическая. Связана с запасанием энергии в процессе фотосинтеза, передачей ее по цепям питания, рассеиванием. Эта функция - одна из важнейших и будет подробнее рассмотрена в разделе IV.4 - энергетика экосистем.

Энергетическая функция живого вещества нашла отражение в двух биогеохимических принципах, сформулированных В.И.Вер­надским. В соответствии с первым из них геохимическая биогенная энергия стремится в биосфере к максимальному проявлению. Второй принцип гласит, что в процессе эволю­ции выживают те организмы, которые своей жизнью увели­чивают геохимическую энергию.

2. Газовая - способность изменять и поддерживать определен­ный газовый состав среды обитания и атмосферы в целом. В час­тности, включение углерода в процессы фотосинтеза, а затем в цепи питания обусловливало аккумуляцию его в биогенном веществе (органические остатки, известняки и т. п.) В результате этого шло постепенное уменьшение содержания углерода и его соединений, прежде всего двуокиси (СО2) в атмосфере с десятков процентов до современных 0,03%. Это же относится к накоплению в ат­мосфере кислорода, синтезу озона и другим процессам.

С газовой функцией в настоящее время связывают два перелом­ных периода (точки) в развитии биосферы. Первая из них относит­ся ко времени, когда содержание кислорода в атмосфере достигло примерно 1% от современного уровня (первая точка Пастера). Это обусловило появление первых аэробных организмов (способных жить только в среде, содержащей кислород). С этого времени вос­становительные процессы в биосфере стали дополняться окисли­тельными. Это произошло примерно 1,2 млрд. лет назад. Второй переломный период в содержании кислорода связывают со време­нем, когда концентрация его достигла примерно 10% от современ­ной (вторая точка Пастера). Это создало условия для синтеза озо­на и образования озонового экрана в верхних слоях атмосферы, что обусловило возможность освоения организмами суши (до этого фун­кцию защиты организмов от губительных ультрафиолетовых лучей выполняла вода, под слоем которой возможна была жизнь).

3. Окислительно-восстановительная. Связана с интенсифи­кацией под влиянием живого вещества процессов как окисления, благодаря обогащению среды кислородом, так и восстановления прежде всего в тех случаях, когда идет разложение органических веществ при дефиците кислорода. Восстановительные процессы обычно сопровождаются образованием и накоплением сероводо­рода, а также метана. Это, в частности, делает практически без­жизненными глубинные слои болот, а также значительные придон­ные толщи воды (например, в Черном море). Данный процесс в связи с деятельностью человека прогрессирует.

4. Концентрационная - способность организмов концентриро­вать в своем теле рассеянные химические элементы, повышая их содержание по сравнению с окружающей организмы средой на не­сколько порядков (по марганцу, например, в теле отдельных орга­низмов - в миллионы раз). Результат концентрационной деятельно­сти - залежи горючих ископаемых, известняки, рудные месторож­дения и т. п. Эту функцию живого вещества всесторонне изучает наука биоминералогия. Организмы-концентраторы используются для решения конкретных прикладных вопросов, например для обога­щения руд интересующими человека химическими элементами или соединениями.

5. Деструктивная - разрушение организмами и продуктами их жизнедеятельности как самих остатков органического вещества, так и косных веществ. Основной механизм этой функции связан с круговоротом веществ. Наиболее существенную роль в этом от­ношении выполняют низшие формы жизни - грибы, бактерии (дес­трукторы, редуценты).

6. Транспортная - перенос вещества и энергии в результате активной формы движения организмов. Часто такой перенос осу­ществляется на колоссальные расстояния, например, при миграци­ях и кочевках животных. С транспортной функцией в значительной мере связана концентрационная роль сообществ организмов, на­пример, в местах их скопления (птичьи базары и другие колониаль­ные поселения).

7. Средообразующая. Эта функция является в значительной мере интегративной (результат совместного действия других фун­кций). С ней в конечном счете связано преобразование физико-хи­мических параметров среды. Эту функцию можно рассматривать в широком и более узком планах.

 

52 - знаю

53 Ноосфе́ра (греч. νόος — «разум» и σφαῖρα — «шар») — сфера взаимодействия общества и природы, в границах которой разумная человеческая деятельность становится определяющим фактором развития (эта сфера обозначается также терминами «антропосфера», «биосфера», «биотехносфера»)[1].

Ноосфера — предположительно новая, высшая стадия эволюции биосферы, становление которой связано с развитием общества, оказывающего глубокое воздействие на природные процессы. Согласно В. И. Вернадскому, «в биосфере существует великая геологическая, быть может, космическая сила, планетное действие которой обычно не принимается во внимание в представлениях о космосе… Эта сила есть разум человека, устремленная и организованная воля его как существа общественного»

 

54 По происхождению:

  • Ресурсы природных компонентов (минеральные, климатические, водные, растительные, почвенные, животного мира)
  • Ресурсы природно-территориальных комплексов (горно-промышленные, водохозяйственные, селитебные, лесохозяйственные)

По видам хозяйственного использования:

  • Ресурсы промышленного производства
    • Энергетические ресурсы (Горючие полезные ископаемые, гидроэнергоресурсы, биотопливо, ядерное сырье)
    • Неэнергетические ресурсы (минеральные, водные, земельные, лесные, рыбные ресурсы)
  • Ресурсы сельскохозяйственного производства (агроклиматические, земельно-почвенные, растительные ресурсы — кормовая база, воды орошения, водопоя и содержания)

По виду исчерпаемости:

  • Исчерпаемые
    • Невозобновляемые (минеральные, земельные ресурсы)
    • Возобновляемые (ресурсы растительного и животного мира)
    • Не полностью возобновляемые — скорость восстановления ниже уровня хозяйственного потребления (пахотно пригодные почвы, спеловозрастные леса, региональные водные ресурсы)
  • Неисчерпаемые ресурсы (водные, климатические)

По степени заменимости:

  • Незаменимые
  • Заменимые

По критерию использования:

  • Производственные (промышленные, сельскохозяйственные)
  • Потенциально-перспективные
  • Рекреационные (природные комплексы и их компоненты, культурно-исторические достопримечательности, экономический потенциал территории)

 

55 К физическому загрязнению относят термическое (тепловое), световое, шумовое, вибрационное, электромагнитное, ионизирующее загрязнения.

Тепловое загрязнение – изменение температуры среды в связи с выбросами нагретых или охлажденных газов, воздуха, воды в окружающую среду. Примером могут служить выпуски теплых вод от различных энергетических установок (тепловые, атомные станции, котельные) в водные объекты. Повышение температуры оказывает существенное влияние на термический и биологический режимы в водных объектах, нарушаются условия нереста рыб, повышается зараженность их паразитами, снижается количество растворенного кислорода и т.д.

Источниками повышения температуры грунтов являются подземное строительство, прокладка коммуникаций. Повышение температуры грунтов стимулирует деятельность микроорганизмов, которые являются агентами коррозии различных коммуникаций.

Световое загрязнение – нарушение естественной освещенности среды. Приводит к нарушению ритмов активности живых организмов. Увеличение мутности воды в водных объектах снижает поступление солнечного света на глубину и фотосинтез водной растительности.

Шумовое загрязнение. Звук – как физическое явление, представляет собой волновое движение упругой среды. Шум – всякого рода звуки, мешающие восприятию полезных звуков или нарушающие тишину. Звуковой диапазон частоты, который воспринимает ухо человека – составляет от 16 до 20000 Гц. Звуковые волны с частотой ниже 20 Гц называют инфразвуковыми, выше 20000 – ультразвуковыми.

И др

56 - знаю

57 - знаю

58 Особо охраняемые природные территории (ООПТ) — участки земли, водной поверхности и воздушного пространства над ними, где располагаются природные комплексы и объекты, которые имеют особое природоохранное, научное, культурное, эстетическое, рекреационное и оздоровительное значение, которые изъяты решениями органов государственной власти полностью или частично из хозяйственного использования и для которых установлен режим особой охраны. Особо охраняемые природные территории относятся к объектам общенационального достояния. Министерство природных ресурсов и экологии Российской Федерации осуществляет государственное управление в области организации и функционирования особо охраняемых природных территорий федерального значения.

  • 1.1 Государственные природные заповедники
  • 1.2 Национальные парки
  • 1.3 Природные парки
  • 1.4 Государственные природные заказники
  • 1.5 Памятники природы
  • 1.6 Дендрологические парки и ботанические сады
  • 1.7Лечебно-оздоровительные местности и курорты

 

59 – наваляю чёт

60 Усто́йчивое разви́тие (англ. sustainable development) — процесс изменений, в котором эксплуатация природных ресурсов, направление инвестиций, ориентация научно-технического развития, развитие личности и институциональные изменения согласованы друг с другом и укрепляют нынешний и будущий потенциал для удовлетворения человеческих потребностей и устремлений.

Во многом, речь идёт об обеспечении качества жизни людей.

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 1652 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2754 - | 2314 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.