Чтобы описать устройство терморезисторов, необходимо сначала углубиться в суть физических особенностей этих приборов и рассмотреть важные зависимости характерных для них физических величин.
Температурная зависимость сопротивления является главной характеристикой терморезисторов, в значительной степени определяющей остальные характеристики этих изделий. Естественно, она аналогична температурной зависимости удельного сопротивления полупроводника, из которого изготовлен данный терморезистор.
Измерения показывают, что температурная зависимость сопротивления большинства типов отечественных терморезисторов с отрицательным ТКС с достаточной для практики точностью во всем рабочем интервале температур или в его части аппроксимируется выражением , где RT – величина сопротивления терморезистора при температуре Т, К, постоянная зависит от физических свойств материала и габаритов терморезистора (l – расстояние между электронами в см и S – площадь поперечного сечения полупроводникового элемента терморезистора в см2); постоянная B зависит от физических свойств материала и может иметь одно или два значения в интервале рабочих температур.
Прологарифмировав , получим . Это выражение в координатах lg R и представляет уравнение прямой, что значительно облегчает определение интервала температур, в котором формула с необходимой точностью аппроксимирует действительную зависимость RT(T). По результатам измерений RT и T строят график зависимости . Если через полученные экспериментально точки можно провести прямую, то считают, что в данном интервале температур выражение для RT справедливо.
Для практических расчетов удобно исключить постоянную A. Написав формулу для RT для двух температур T2 и T1 и разделив одно на другое, получим:
.
Из этой формулы можно рассчитать величину сопротивления терморезистора при любой температуре T2 (в интервале рабочих температур), зная значение постоянной B и сопротивление образца при какой-то температуре T1.
Величина B определяется экспериментально измерением сопротивления терморезистора при двух температурах T1 и T2. Логарифмируя предыдущее выражение, легко получить , где , а . Размерность B – градусы Цельсия или Кельвина. B – это коэффициент температурной чувствительности. Если определить ТКС терморезистора α как это обычно принято: , то из следует, что
.
Для позисторов температурные зависимости сопротивления, снятые в широких интервалах температур, имеют сложный характер. При достаточно низких и высоких температурах сопротивление уменьшается при увеличении температуры по закону, близкому к экспоненциальному. В промежуточной области сопротивление R резко возрастает при повышении температуры. Крутизной графика, а, следовательно, и величиной ТКС, можно управлять в широких пределах различными технологическими приемами.
Для многих типов позисторов сопротивление в довольно большом интервале температур (порядка нескольких десятков градусов Цельсия/Кельвина) меняется строго по экспоненциальному закону.
,
где A – постоянная, α – температурный коэффициент сопротивления при температуре toC в абсолютных единицах.
Итак, терморезисторы изготавливаются из материала, изменяющего свое сопротивление с изменением температуры в соответствии с перечисленными выше основными зависимости R = f(T). В терморезисторах с отрицательным ТКС полупроводниковый материал – спеченная керамика, которой придают различные форму и размеры. Ее изготавливают из смеси оксидов металлов, таких, как Mn, Ni, Co, Cu, Fe. Изменяя состав материала и размеры терморезистора, можно получить сопротивления от 1 до 106 Ом при комнатной температуре и ТКС от -2 до 6,5% на 1oC.
Терморезисторы, как уже было сказано, изготавливаются разных размеров: от бусинок диаметром 0,2 мм, дисков и шайб диаметром 3-25 мм до стержней диаметром 12 и длиной до 40 мм. Бусинковые терморезисторы можно заливать стеклом, помещать в стеклянные или пластмассовые оболочки или в транзисторные корпуса. Дисковые защищают чаще изоляционными пленками из лака или эпоксидных смол.
Важная технологическая операция в производстве терморезисторов – создание омических контактов к термочувствительным элементам. Для этого на торцевых поверхностях термочувствительных элементов, выполненных в виде стержней, дисков или шайб создают серебряные контакты с помощью специальных паст. Для повышения стабильности параметров эти элементы подвергают термообработке при 200-300oC. Окончательная стабилизация происходит путем прогрева элементов в течение сотен часов при максимальной рабочей температуре.
Когда терморезистивный элемент получен, его защищают специальными лаками, а в ряде случаев помещают в стеклянный или металлический корпус. При измерении сопротивления надо поддерживать температуру терморезистора с высокой точностью (0,05-0,1oC), так как сопротивление является функцией температуры.
Используемые материалы.
Материал для создания терморезисторов должен удовлетворять следующим требованиям: чисто электронная проводимость материала и возможность регулирования ее, стабильность характеристик материала в диапазоне рабочих температур, простота технологии изготовления изделий. Материалы должны быть нечувствительными к загрязнениям в процессе технологического изготовления изделий.
Наибольший интерес вызывают полупроводниковые материалы, обладающие большим ТКС, кроме комплекса необходимых свойств. Большое распространение получили CuO, Mn3O4, Co3O4, NiO и их смеси. На основе смесей оксидов меди и марганца получены полупроводниковые материалы с электропроводностью от 10-8 до 10-1 (Ом∙см)-1. Электропроводность кобальто-марганцевых окисных полупроводников лежит в пределах от 10-9 до 10-3 (Ом∙см)-1. Получение необходимой электропроводности и ТКС достигается выбором процентного соотношения оксидов металлов в композиции при использовании метода совместного охлаждения щелочью азотнокислых соединений марганца, кобальта, меди и последующего прокаливания гидратов окислов.
Также используют окислы титана, ванадия, железа. При изменении соотношения компонентов соответствующих материалов можно получить заданные значения удельного сопротивления и ТКС. Использованием указанных компонентов и несколько видоизмененных способов смешения и термического обжига удалось создать терморезисторы с косвенным подогревом (ТКП).
Интерес для производства терморезисторов вызывают тройные марганцевые системы окислов, так как электропроводность таких материалов слабо зависит от примесей, следовательно, можно получать на их основе терморезисторы с малым разбросом по сопротивлению и ТКС, а значит массовый выпуск терморезисторов с заданными электрическими параметрами.
Современные терморезисторы с отрицательным ТКС обычно изготавливают из следующих оксидных систем: никель-марганец-медь, никель-марганец-кобальт-медь, кобальт-марганец-медь, железо-титан, никель-литий, кобальт-литий, медь-марганец. Кроме того, практикуется добавление таких элементов, как железо, алюминий, цинк, магний, которые позволяют модифицировать свойства перечисленных систем.
Тенденции развития современных материалов с отрицательным ТКС выявили три основных направления в производстве терморезисторов. Главное – получение более стабильных терморезисторов. В результате появились взаимозаменяемые высокостабильные приборы с отрицательным ТКС. Это было достигнуто за счет использования более чистых исходных материалов, подбора соответствующих композиций и тщательного контроля на всех стадиях изготовления терморезистора.
Второе направление – расширение верхней границы рабочих температур. Было создано несколько типов терморезисторов, у которых эта граница приблизительно равна 1000oC. Это было достигнуто за счет применения высокотемпературных материалов.
Третье направление – создание переключающих терморезисторов с отрицательным ТКС. Они имеют очень большое изменение сопротивления в узком интервале температур и называются терморезисторы с критической температурой и терморезисторы на основе металлоксидных соединений, в которых используется резкое изменение проводимости от полупроводниковой к металлической, например VO2 с температурой перехода 68oC.
Довольно перспективное направление представляют собой терморезисторы с положительным ТКС. Терморезистивные элементы с положительным ТКС выпускают на основе титанато-бариевой керамики, сопротивление этих элементов значительно снижено добавлением редкоземельных элементов. Титанат бария BaTiO3 – диэлектрик, поэтому его удельное сопротивление при комнатной температуре велико (1010-1012) Ом∙см. При введении туда примесей, таких, как лантан или церий, в ничтожно малых количествах (0,1-0,3 атомного процента) его удельное сопротивление уменьшается до 10-100 Ом∙см. Если ввести эти примеси в титанат бария, его сопротивление в узком интервале температур увеличится на несколько порядков.