Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Уравнение касательной к графику функции.




 

Выведем уравнение касательной к графику функции в точке .

Будем искать это уравнение в виде у=кх+в.

Т.к. прямая проходит через данную точку, то

, откуда .

Тогда . А поскольку , то

- уравнение касательной.

Пример. Составить уравнение касательной к графику функции в точке (2;4).

.

.

 

Производные высших порядков.

Если функция дифференцируема в точке, то она имеет производную в этой точке, которая также является функцией от х и также может быть дифференцируемой.

Производной второго порядка или второй производной функции называется производная от ее производной:

.

Вторая производная также может быть обозначена символами , .

Аналогично определяется и обозначается производная третьего порядка:

.

Для обозначения производных более высокого порядка используются арабские цифры в скобках или римские цифры, например: или .

Опр. Производной n-го порядка называется производная от производной (n-1)-го порядка: .

 

Пример. Найти вторую производную функции .

Решение. ;

.

 

 

Дифференциал.

 

Пусть функция определена на промежутке Х и дифференцируема в некоторой окрестности точки .

Тогда существует конечная производная .

По теореме о связи предела и бесконечно малой:

, где - бесконечно малая при . Отсюда

.

Таким образом, приращение функции можно представить в виде суммы двух слагаемых: линейного относительно и бесконечно малого при .

Опр. Дифференциалом функции называется главная, линейная относительно часть приращения функции, равная произведению производной на приращение аргумента:

.

Рассмотрим функцию у=х и найдем ее дифференциал.

. Таким образом, формула дифференциала может быть записана в виде:

.

 

Пример. Найти дифференциал функции .

.

 

Выясним геометрический смысл дифференциала. Из : . Таким образом, дифференциал есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда х получает приращение .

 

Свойства дифференциала аналогичны свойствам производной:

1. d(С)=0;

2. d(u+v)=du+dv;

3. d(uv)=vdu+udv;

4. ;

5. Форма дифференциала инвариантна (неизменна): он всегда равен произведению производной на дифференциал аргумента, независимо от того, простым или сложным является аргумент.

 

Пример 1. Найти дифференциал функции .

Решение. Используя свойства дифференциала, получим:

.

 

Пример 2. Найти дифференциал функции .

Решение. .

 

Опр. Дифференциалом второго порядка (или вторым дифференциалом) называется дифференциал от дифференциала функции, т.е.:

.

 

Аналогично, дифференциалом п -го порядка называется дифференциал от дифференциала (п-1) -го порядка этой функции: .

 





Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 357 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Большинство людей упускают появившуюся возможность, потому что она бывает одета в комбинезон и с виду напоминает работу © Томас Эдисон
==> читать все изречения...

2530 - | 2189 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.