Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Основные правила дифференцирования

Лекция 12. Производная функции

Понятие производной

Определение. Если отно­ше­ние имеет предел при этот предел называ­ют производной функции при заданном значении и за­пи­сывают

. (1)

Замечание. Если при не­ко­то­ром значении , су­щест­ву­ет производная функции при этом значении, то в этой точке функция непрерывна.

Заметим, что отношение из рис. 1 численно равно .

Определение. Производная функции в точке численно равна тан­генсу угла, который составляет касательная к графику этой функции по­строенной в точке с положительным направлением с осью .

Из последнего определения ста­но­вится ясно, почему в случае убы­ва­ю­щей функции (рис. 2) про­из­вод­ная от­ри­цательна. Это объясняется тем, что , если будет отрицатель­ным.

На этом свойстве производной осно­ва­но исследование поведения функции на возрастание (убывание) на заданном отрезке.

 

Производные простейших функций

 

Используя определение производной и правил вычисления пределов, най­дем производные простейших функций.

1. , где – некоторая постоянная. По определению производной из (1) получаем удобную формулу

, (2)

тогда из (2) имеем , т.е. . Про­из­вод­ная постоянной величины равна 0.

2. , где – любое число. Из формулы (2) имеем

Т.е. .

3. .

Т.е. .

Остальные производные простейших функций (табл.1) приведем без вывода

Таблица 1

Производные простейших функций

Функция Производная Функция Производная
С  
,
,

 

Основные правила дифференцирования

Пусть заданы две функции и , которые имеют про­из­вод­ные в точке .

1. Производная алгебраической суммы равна алгебраической сумме производных. .

Покажем это. Пусть некоторая функция у, равная имеет приращение . Тогда функции и тоже должны получить приращения и , соответственно. Новое значение будет , а для , следовательно,

Найдем по определению (2) производной

.

 

2. Производная произведения равна . Покажем спра­вед­ли­вость этого равенства.

Если, как в первом случае, дать приращение , то функции u и v также получат приращение, следовательно, и функция тоже изменится. Найдем .

.

По определению производной

Если необходимо вычислить производную нескольких сомножителей, например, , если все три функции имеют производные в точке , используя правило вычисления производной для двух сомножителей, получим

3. Производная частного. Рассмотрим функцию , причем, кроме су­щес­твования производных в точке для функций и необходимо по­ло­жить, что в точке отлична от нуля.

Найдем .

и тогда из определения производной имеем

.

Пример. Показать, что .

Решение. Используя производную частного

4. Производная сложной функции. Пусть дана , где . Тогда имеет место теорема, которую приведем здесь без доказательства.

Теорема. Если функция имеет в точке производную и функция имеет в точке производную , тогда сложная функция имеет в точке производную, равную

(3)

Пример. Найти производную функции .

Решение. .

 

Пример. Найти производную функции .

Решение.

Пример. Найти производную сложной функции .

Решение.

5. Логарифмическое дифференцирование. Пусть дана функция . При этом предполагается, что функция не обращается в нуль в точке . Покажем один из способов нахождения производной функции , если очень сложная функция и по обычным правилам диф­фе­рен­цирования найти производную затруднительно.

Так как по первоначальному предположению не равна нулю в точке, где ищется ее производная, то найдем новую функцию и вычислим ее производную

. (4)

Отношение называется логарифмической производной функции . Из формулы (4) получаем

. (5)

Формула (5) дает простой способ нахождения производной функции .

Пример. Найти производную сложной функции

Решение. Для нахождения используем формулу (5). Предварительно прологарифмируем функцию

и найдем производную полученной функции

.

Теперь по формуле (5) получаем

.

Пример. Найти производную сложной функции .

Решение. В связи с тем, что указанная функция сложная, воспользуемся логарифмическим дифференцированием, для чего предварительно прологарифмируем нашу функцию

.

Найдем производную полученной функции по формуле (5).

.

6. Производная обратной функции.

Теорема. Если имеет в точке производную, отличную от нуля, тогда в этой точке обратная функция также имеет производную и имеет место соотношение

. (6)

Пользуясь этой теоремой, найдем производные обратных три­го­но­мет­ри­чес­ких функций.

1. на интервале . , тогда , от­ку­да сле­до­ва­тель­но, .

2. . . , откуда

3. . ; , откуда

4. ; ;

5. , где и являются функциями от . Для нахождения применим формулу (5). Для этого предварительно найдем функцию

и ее производную

.

По формуле (5) получаем .

Эту же формулу можно получить иначе. Представим в виде

и найдем производную этой функции

.

В заключение этой лекции приведем таблицу основных формул дифференцирования (табл.2).

Таблица 2.



<== предыдущая лекция | следующая лекция ==>
Организационного поведения. | Тип Echinodermata — Иглокожие
Поделиться с друзьями:


Дата добавления: 2016-11-18; Мы поможем в написании ваших работ!; просмотров: 981 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2160 - | 2048 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.