Попытку определить, что же такое современная информатика, сделал в 1978 г. Международный конгресс по информатике: “Понятие информатики охватывает области, связанные с разработкой, созданием, использованием и материально-техническим обслуживанием систем обработки информации, включая машины, оборудование, математическое обеспечение, организационные аспекты, а также комплекс промышленного, коммерческого, административного и социального воздействия”.
1.3. Место информатики в ряду других фундаментальных наук
Рассмотрим место науки информатики в традиционно сложившейся системе наук (технических, естественных, гуманитарных и т.д.).
Напомним, что по определению А.П.Ершова информатика – “фундаментальная естественная наука”. Академик Б.Н.Наумов определял информатику “как естественную науку, изучающую общие свойства информации, процессы, методы и средства ее обработки (сбор, хранение, преобразование, перемещение, выдача)”.
Уточним, что такое фундаментальная наука и что такое естественная наука. К фундаментальным принято относить те науки, основные понятия которых носят общенаучный характер, используются во многих других науках и видах деятельности. Нет, например, сомнений в фундаментальности столь разных наук как математика и философия. В этом же ряду и информатика, так как понятия “информация”, “процессы обработки информации” несомненно имеют общенаучную значимость.
Естественные науки – физика, химия, биология и другие – имеют дело с объективными сущностями мира, существующими независимо от нашего сознания. Отнесение к ним информатики отражает единство законов обработки информации в системах самой разной природы – искусственных, биологических, общественных.
Рис. 1.2. К вопросу о месте информатики в системе наук
Однако многие ученые подчеркивают, что информатика имеет характерные черты и других групп наук – технических и гуманитарных (или общественных).
Черты технической науки придают информатике ее аспекты, связанные с созданием и функционированием машинных систем обработки информации. Так, академик А.А.Дородницын определяет состав информатики как “три неразрывно и существенно связанные части: технические средства, программные и алгоритмические”. Науке информатике присущи и некоторые черты гуманитарной (общественной) науки, что обусловлено ее вкладом в развитие и совершенствование социальной сферы. Таким образом, информатика является комплексной, междисциплинарной отраслью научного знания, как это изображено на рис. 1.2.
1.4. Информационные технологии
Информационная технология – процесс, использующий совокупность средств и методов сбора, обработки и передачи данных (первичной информации) для получения информации нового качества о состоянии объекта, процесса или явления (информационного продукта).
Цель информационной технологии – производство информации для ее анализа человеком и принятия на его основе решения по выполнению какого-либо действия.
Информационная технология является наиболее важной составляющей процесса использования информационных ресурсов общества. К настоящему времени она прошла несколько эволюционных этапов, смена которых определялась главным образом развитием научно-технического прогресса, появлением новых технических средств переработки информации. В современном обществе основным техническим средством технологии переработки информации служит персональный компьютер, который существенно повлиял как на концепцию построения и использования технологических процессов, так и на качество результатной информации.
Внедрение персонального компьютера в информационную сферу и применение телекоммуникационных средств связи определили новый этап развития информационной технологии и, как следствие, изменение ее названия за счет присоединения одного из синонимов: «новая», «компьютерная» или «современная».
Инструментарий информационной технологии – один или несколько взаимосвязанных программных продуктов для определенного типа компьютера, технология работы в котором позволяет достичь поставленную пользователем цель.
В качестве инструментария можно использовать следующие распространенные виды программных продуктов для персонального компьютера: текстовый процессор (редактор), настольные издательские системы, электронные таблицы, системы управления базами данных, электронные записные книжки, электронные календари, информационные системы функционального назначения (финансовые, бухгалтерские, для маркетинга и пр.), экспертные системы и т.д.
Информационная технология является процессом, состоящим из четко регламентированных правил выполнения операций, действий, этапов разной степени сложности над данными, хранящимися в компьютерах. Основная цель информационной технологии – в результате целенаправленных действий по переработке первичной информации получить необходимую для пользователя информацию.
Информационная технология тесно связана с информационными системами, которые являются для нее основной средой.
Информационная система является средой, составляющими элементами которой являются компьютеры, компьютерные сети, программные продукты, базы данных, люди, различного рода технические и программные средства связи и т.д. Основная цель информационной системы – организация хранения и передачи информации. Информационная система представляет собой человеко-компьютерную систему обработки информации.
На рис. 1.3 технологический процесс переработки информации представлен в виде иерархической структуры по уровням.
Рис.1.3. Представление информационной технологии в виде иерархической структуры, состоящей из этапов, действий, операций
Необходимо понимать, что освоение информационной технологии и дальнейшее ее использование должны свестись к тому, что вы должны сначала хорошо овладеть набором элементарных операций, число которых ограничено. Из этого ограниченного числа элементарных операций в разных комбинациях составляется действие, а из действий, также в разных комбинациях, составляются операции, которые определяют тот или иной технологический этап. Совокупность технологических этапов образует технологический процесс (технологию).
Информационная технология, как и любая другая, должна отвечать следующим требованиям:
· обеспечивать высокую степень расчленения всего процесса обработки информации на этапы (фазы), операции, действия;
· включать весь набор элементов, необходимых для достижения поставленной цели;
· иметь регулярный характер. Этапы, действия, операции технологического процесса могут быть стандартизированы и унифицированы, что позволит более эффективно осуществлять целенаправленное управление информационными процессами.
1.5. Социально-экономические аспекты информационных технологий
Термин “социальные аспекты” применительно к большей части наук, тем более фундаментальных, звучит странно. Вряд ли фраза “Социальные аспекты математики” имеет смысл. Однако информатика – не только наука. Вспомним цитированное выше определение: “... комплекс промышленного, коммерческого, административного и социального воздействия”.
И действительно, мало какие факторы так влияют на социальную сферу обществ (разумеется, находящихся в состоянии относительно спокойного развития, без войн и катаклизмов), как информатизация. Информатизация общества – процесс проникновения информационных технологий во все сферы жизни и деятельности общества. Многие социологи и политологи полагают, что мир стоит на пороге информационного общества. В.А. Извозчиков предлагает следующее определение: “Будем понимать под термином “информационное” (“компьютеризированное”) общество то, во все сферы жизни и деятельности членов которого включены компьютер, телематика, другие средства информатики в качестве орудий интеллектуального труда, позволяющих с огромной скоростью проводить вычисления и перерабатывать любую информацию, моделировать реальные и прогнозируемые события, процессы, явления, управлять производством, автоматизировать обучение и т.д.”. Под “телематикой” в приведенной цитате понимаются службы обработки информации на расстоянии (кроме традиционных телефона и телеграфа).
Последние полвека информатизация является одной из причин перетока людей из сферы прямого материального производства в так называемую информационную сферу. Промышленные рабочие и крестьяне, составлявшие в середине XX века более 2/3 населения, сегодня в развитых странах составляют менее 1/3. Все больше тех, кого называют “белые воротнички”, – людей, не создающих материальные ценности непосредственно, а занятых обработкой информации (в самом широком смысле): это и учителя, и банковские служащие, и программисты, и многие другие категории работников. Появились и новые пограничные специальности. Можно ли назвать рабочим программиста, разрабатывающего программы для станков с числовым программным управлением? По ряду параметров можно, однако его труд не физический, а интеллектуальный.
Информатизация сильнейшим образом влияет на структуру экономики ведущих в экономическом отношении стран. Среди лидирующих отраслей промышленности традиционные добывающие и обрабатывающие отрасли оттеснены максимально наукоемкими производствами электроники, средств связи и вычислительной техники (так называемой сферой высоких технологий). В этих странах постоянно растут капиталовложения в научные исследования, включая фундаментальные науки. Темпы развития сферы высоких технологий и уровень прибылей в ней превышают в 5-10 раз темпы развития традиционных отраслей производства.
Такая политика имеет и социальные последствия – увеличение потребности в высокообразованных специалистах и связанный с этим прогресс системы высшего образования. Информатизация меняет и облик традиционных отраслей промышленности и сельского хозяйства. Промышленные роботы, управляемые ЭВМ, станки с ЧПУ стали обычным оборудованием. Новейшие технологии в сельскохозяйственном производстве не только увеличивают производительность труда, но и облегчают его, вовлекают более образованных людей.
Казалось бы, компьютеризация и информационные технологии несут в мир одну лишь благодать, но социальная сфера столь сложна, что последствия любого, даже гораздо менее глобального процесса редко бывают однозначными. Рассмотрим, например, такие социальные последствия информатизации, как рост производительности труда, интенсификацию труда, изменение условий труда. Все это, с одной стороны, улучшает условия жизни многих людей, повышает степень материального и интеллектуального комфорта, стимулирует рост числа высокообразованных людей, а с другой – является источником повышенной социальной напряженности. Например, появление на производстве промышленных роботов ведет к полному изменению технологии, которая перестает быть ориентированной на человека. Тем самым меняется номенклатура профессий. Значительная часть людей вынуждена менять либо специальность, либо место работы – рост миграции населения характерен для большинства развитых стран. Государство и частные фирмы поддерживают систему повышения квалификации и переподготовки, но не все люди справляются с сопутствующим стрессом. Прогрессом информатики порожден и другой достаточно опасный для демократического общества процесс – все большее количество данных о каждом гражданине сосредоточивается в разных (государственных и негосударственных) банках данных. Это данные о профессиональной карьере (базы данных отделов кадров), здоровье (базы данных учреждений здравоохранения), имущественных возможностях (базы данных страховых компаний), перемещении по миру и т.д. (не говоря уже о тех, которые копят специальные службы). В каждом конкретном случае создание банка может быть оправдано, но в результате возникает система невиданной раньше ни в одном тоталитарном обществе прозрачности личности, чреватой возможным вмешательством государства или злоумышленников в частную жизнь. Одним словом, жизнь в “информационном обществе” легче, по-видимому, не становится, а вот то, что она значительно меняется, – несомненно.
1.6. Правовые и этические аспекты информационных технологий
Деятельность программистов и других специалистов, работающих в сфере информатики, все чаще выступает в качестве объекта правового регулирования. Некоторые действия при этом могут быть квалифицированы как правонарушения (преступления).
Необходимо отметить, что регулирование в сфере, связанной с защитой информации, программированием и т.д., является для российского законодательства принципиально новым, еще слабо разработанным направлением. В 1992 году был принят Закон Российской Федерации “О правовой охране программ для электронных вычислительных машин и баз данных”, содержащий обширный план приведения российского законодательства в сфере информатики в соответствие с мировой практикой. Действие этого Закона распространяется на отношения, связанные с созданием и использованием программ для ЭВМ и баз данных. Также предусматривалось внести изменения и дополнения в Гражданский кодекс РФ, в Уголовный кодекс РФ, другие законодательные акты, связанные с вопросами правовой охраны программ для электронных вычислительных машин и баз данных, привести решения Правительства РФ в соответствие с Законом, обеспечить пересмотр и отмену государственными ведомствами и другими организациями РФ их нормативных актов, противоречащих указанному Закону, обеспечить принятие нормативных актов в соответствии с указанным Законом и т.д.
Главное содержание данного Закона – юридическое определение понятий, связанных с авторством и распространением компьютерных программ и баз данных, таких как Авторство, Адаптация, База данных, Воспроизведение, Декомпилирование, Использование, Модификация и т.д., а также установление прав, возникающих при создании программ и баз данных, – авторских, имущественных, на передачу, защиту, регистрацию, неприкосновенность и т.д.
Авторское право распространяется на любые программы для ЭВМ и базы данных (как выпущенные, так и не выпущенные в свет), представленные в объективной форме, независимо от их материального носителя, назначения и достоинства. Авторское право распространяется на программы для ЭВМ и базы данных, являющиеся результатом творческой деятельности автора. Творческий характер деятельности автора предполагается до тех пор, пока не доказано обратное.
Авторское право на программы для ЭВМ и базы данных возникает в силу их создания. Для признания и осуществления авторского права на программы для ЭВМ и базы данных не требуется опубликования, регистрации или соблюдения иных формальностей. Авторское право на базу данных признается при условии соблюдения авторского права на каждое из произведений, включенных в базу данных.
Автором программы для ЭВМ и базы данных признается физическое лицо, в результате творческой деятельности которого они созданы.
Автору программы для ЭВМ или базы данных или иному правообладателю принадлежит исключительное право осуществлять и (или) разрешать осуществление следующих действий:
· выпуск в свет программы для ЭВМ и базы данных;
· воспроизведение программы для ЭВМ и базы данных (полное или частичное) в любой форме, любыми способами;
· распространение программы для ЭВМ и баз данных;
· модификацию программы для ЭВМ и базы данных, в том числе перевод программы для ЭВМ и базы данных с одного языка на другой;
· иное использование программы для ЭВМ и базы данных.
В настоящее время уголовное законодательство РФ не в полной мере учитывает все возможные компьютерные преступления. Вообще же, в законодательной практике многих стран отмечены различные виды компьютерных преступлений и разработаны методы борьбы с ними.
Компьютерные преступления условно можно разделить на две большие категории:
1) преступления, связанные с вмешательством в работу компьютеров;
2) преступления, использующие компьютеры как необходимые технические средства.
Можно выделить следующие виды компьютерной преступности 1-го вида:
· несанкционированный доступ в компьютерные сети и системы, банки данных с целью шпионажа или диверсии (военного, промышленного, экономического), с целью так называемого компьютерного хищения или из хулиганских побуждений;
· ввод в программное обеспечение так называемых “логических бомб”, срабатывающих при определенных условиях (логические бомбы, угрожающие уничтожением данных, могут использоваться для шантажа владельцев информационных систем или выполнять новые, не планировавшиеся владельцем программы, функции при сохранении работоспособности системы; известны случаи, когда программисты вводили в программы финансового учета команды, переводящие на счета этих программистов денежные суммы или скрывающие денежные суммы от учета, что позволяло незаконно получать их);
· разработку и распространение компьютерных вирусов;
· преступную небрежность в разработке, изготовлении и эксплуатации программно-вычислительных комплексов, приведшую к тяжким последствиям;
· подделку компьютерной информации (продукции) и сдачу заказчикам неработоспособных программ, подделку результатов выборов, референдумов;
· хищение компьютерной информации (нарушение авторского права и права владения программными средствами и базами данных).
Для современного состояния правового регулирования сферы, связанной с информатикой, в России в настоящее время наиболее актуальными являются вопросы, касающиеся нарушения авторских прав. Большая часть программного обеспечения, использующегося отдельными программистами и пользователями и целыми организациями, приобретена в результате незаконного копирования, т.е. хищения. Назрела потребность узаконить способы борьбы с этой порочной практикой, поскольку она мешает, прежде всего, развитию самой информатики.
Далеко не все правила, регламентирующие деятельность в сфере информатики, можно свести к правовым нормам. Очень многое определяется соблюдением неписаных правил поведения для тех, кто причастен к миру компьютеров. Впрочем, в этом отношении информатика ничуть не отличается от любой другой сферы деятельности человека в обществе.
Морально-этические нормы в среде информатиков отличаются от этики повседневной жизни несколько большей открытостью, альтруизмом. Большинство нынешних специалистов-информатиков сформировались и приобрели свои знания и квалификацию благодаря бескорыстным консультациям и содействию других специалистов. Очевидно, поэтому они готовы оказать бескорыстную помощь, дать совет или консультацию, предоставить компьютер для выполнения каких-либо манипуляций с дискетами и т.д. Ярким примером особой психологической атмосферы в среде информатиков является расширяющееся международное движение программистов, предоставляющих созданные ими программные средства для свободного распространения.
Особую остроту этические проблемы приобретают при работе в глобальных телекоммуникационных сетях. Вскрыть защиту чужой базы данных – уголовное преступление. А можно ли позволять себе нецензурные выражения? Коммерческую рекламу в некоммерческой телеконференции? Независимо от того, предусмотрено за это законом возмездие или нет, порядочный человек этого делать не станет.
Этика – система норм нравственного поведения человека. Порядочный человек не прочтет содержимое дискеты, забытой соседом на рабочем месте, не потому, что это грозит ему наказанием, а потому, что это безнравственный поступок. Он не скопирует программу в отсутствие ее хозяина не потому, что на него могут подать в суд, а потому, что этот поступок осудят его коллеги. Всякий раз, собираясь совершить сомнительный поступок в сфере профессиональной деятельности, человек должен задуматься, соответствует ли он этическим нормам, сложившимся в профессиональном сообществе.
2. Информация
2.1. Понятие информации. Носители информации. Сигналы
Термин “информация” имеет много определений. В широком смысле информация – отражение реального мира. Существует определение термина в узком смысле: информация – любые сведения, являющиеся объектом хранения, передачи и преобразования. Оба определения важны для понимания процессов функционирования вычислительной машины.
Все, что нас окружает и с чем мы сталкиваемся ежедневно, относится либо к физическим телам, либо к физическим полям. Из курса физики мы знаем, что состояния абсолютного покоя не существует и физические объекты находятся в состоянии непрерывного движении и изменения, которое сопровождается обменом энергией и ее переходом из одной формы в другую.
Все виды энергообмена сопровождаются появлением сигналов, то есть все сигналы имеют в своей основе материальную энергетическую природу. При взаимодействии сигналов с физическими телами в последних возникают определенные изменения свойств – это явление называется регистрацией сигналов. Такие изменения можно наблюдать, измерять или фиксировать иными способами – при этом возникают и регистрируются новые сигналы, то есть образуются данные. При этом физический метод регистрации может быть любым: механическое перемещение физических тел, изменение их формы или параметров качества поверхности, изменение электрических, магнитных, оптических характеристик, химического состава и (или) характера химических связей, изменение состояния электронной системы и многое другое. В соответствии с методом регистрации данные могут храниться и транспортироваться на носителях различных видов.
Самым распространенным носителем данных, хотя и не самым экономичным, по-видимому, является бумага. На бумаге данные регистрируются путем изменения оптических характеристик ее поверхности. Изменение оптических свойств (изменение коэффициента отражения поверхности в определенном диапазоне длин волн) используется также в устройствах, осуществляющих запись лазерным лучом на пластмассовых носителях с отражающим покрытием (CD-ROM). В качестве носителей, использующих изменение магнитных свойств, можно назвать магнитные ленты и диски. Регистрация данных путем изменения химического состава поверхностных веществ носителя широко используется в фотографии. На биохимическом уровне происходит накопление и передача данных в живой природе.
Носители данных интересуют нас не сами по себе, а постольку, поскольку свойства информации весьма тесно связаны со свойствами ее носителей. Любой носитель можно характеризовать параметром разрешающей способности (количеством данных, записанных в принятой для носителя единице измерения) и динамическим диапазоном (логарифмическим отношением интенсивности амплитуд максимального и минимального регистрируемого сигналов). От этих свойств носителя нередко зависят такие свойства информации, как полнота, доступность и достоверность. Так, например, мы можем рассчитывать на то, что в базе данных, размещаемой на компакт-диске, проще обеспечить полноту информации, чем в аналогичной по назначению базе данных, размещенной на гибком магнитном диске, поскольку в первом случае плотность записи данных на единице длины дорожки намного выше. Для обычного потребителя доступность информации в книге заметно выше, чем той же информации на компакт-диске, поскольку не все потребители обладают необходимым оборудованием. И, наконец, известно, что визуальный эффект от просмотра слайда в проекторе намного больше, чем от просмотра аналогичной иллюстрации, напечатанной на бумаге, поскольку диапазон яркостных сигналов в проходящем свете на два-три порядка больше, чем в отраженном.
Задача преобразования данных с целью смены носителя относится к одной из важнейших задач информатики. В структуре стоимости вычислительных систем устройства для ввода и вывода данных, работающие с носителями информации, составляют до половины стоимости аппаратных средств.
2.2. Измерение информации. Энтропия. Количество информации
Информационные меры, как правило, рассматриваются в трех аспектах: структурном, статистическом и семантическом.
В структурном аспекте рассматривается строение массивов информации и их измерение простым подсчетом информационных элементов или комбинаторным методом. Структурный подход применяется для оценки возможностей информационных систем вне зависимости от условий их применения.
При статистическом подходе используется понятие энтропии как меры неопределенности, учитывающей вероятность появления и информативность того или иного сообщения. Статистический подход учитывает конкретные условия применения информационных систем.
Семантический подход позволяет выделить полезность или ценность информационного сообщения.
2.2.1. Структурная мера информации
Информация всегда представляется в виде сообщения. Элементарная единица сообщений – символ. Символы, собранные в группы, – слова. Сообщение, оформленное в виде слов или отдельных символов, всегда передается в материально-энергетической форме (электрический, световой, звуковой сигналы и т. д.).
Различают информацию непрерывную и дискретную.
Рис. 2.1. Способы представления информации
Функция x(t), изображенная на рис. 2.1, а, может быть представлена в непрерывном (рис. 2.1, б) и дискретном (рис. 2.1, в) видах. В непрерывном виде эта функция может принимать любые вещественные значения в данном диапазоне изменения аргумента t, т. е. множество значений непрерывной функции бесконечно. В дискретном виде функция x(t) может принимать вещественные значения только при определенных значениях аргумента. Какой бы малый интервал дискретности (т. е. расстояние между соседними значениями аргумента) ни выбирался, множество значений дискретной функции для заданного диапазона изменений аргумента (если он не бесконечный) будет конечно (ограничено).
При использовании структурных мер информации учитывается только дискретное строение сообщения, количество содержащихся в нем информационных элементов, связей между ними. При структурном подходе различаются геометрическая, комбинаторная и аддитивная меры информации.
Геометрическая мера предполагает измерение параметра геометрической модели информационного сообщения (длины, площади, объема и т. п.) в дискретных единицах. Например, геометрической моделью информации может быть линия единичной длины (рис 2.2,а – одноразрядное слово, принимающее значение 0 или 1), квадрат (рис. 2.2,б– двухразрядное слово) или куб (рис 2.2,в – трехразрядное слово). Максимально возможное количество информации в заданных структурах определяет информационную емкость модели (системы), которая определяется как сумма дискретных значений по всем измерениям (координатам).
Рис. 2.2. Геометрическая модель информации
В комбинаторной мере количество информации определяется как число комбинаций элементов (символов). Возможное количество информации совпадает с числом возможных сочетаний, перестановок и размещений элементов. Комбинирование символов в словах, состоящих только из 0 и 1, меняет значения слов. Рассмотрим две пары слов 100110 и 001101, 011101 и 111010. В них проведена перестановка крайних разрядов (изменено местоположение знакового разряда в числе – перенесен слева направо).
Аддитивная мера (мера Хартли), в соответствии с которой количество информации измеряется в двоичных единицах (битах), наиболее распространена. Вводятся понятия глубины q и длины n числа.
Глубина числа q – количество символов (элементов), принятых для представления информации. В каждый момент времени реализуется только один какой-либо символ. Глубина числа соответствует основанию системы счисления.
Длина числа n – количество позиций, необходимых и достаточных для представления чисел заданной величины. Длина числа соответствует разрядности системы счисления.
При заданных глубине и длине числа количество чисел, которое можно представить, N = qn. Величина N неудобна для оценки информационной емкости. Хартли ввел аддитивную двоичную логарифмическую меру, позволяющую вычислять количество информации в двоичных единицах – битах:
I = log2N = n log2 q (2.1)
При n = 1, q = 2 I = log2 2 = 1 бит. Это и есть единица информации по Хартли.
Следовательно, 1 бит информации соответствует одному элементарному событию, которое может произойти или не произойти. Такая мера количества информации удобна тем, что она обеспечивает возможность оперировать мерой как числом. Количество информации при этом эквивалентно количеству двоичных символов 0 или 1. При наличии нескольких источников информации общее количество информации:
(2.2)
где I(qk) – количество информации от источника k.
Логарифмическая мера информации позволяет измерять количество информации и используется на практике.
2.2.2. Статистическая мера информации
В статистической теории информации вводится более общая мера количества информации, в соответствии с которой рассматривается не само событие, а информация о нем. Этот вопрос глубоко проработан К. Шенноном в работе “Избранные труды по теории информации”. Если появляется сообщение о часто встречающемся событии, вероятность появления которого близка к единице, то такое сообщение для получателя малоинформативно. Столь же малоинформативны сообщения о событиях, вероятность появления которых близка к нулю.
События можно рассматривать как возможные исходы некоторого опыта, причем все исходы этого опыта составляют полную группу событий. К. Шеннон ввел понятие неопределенности ситуации, возникающей в процессе опыта, назвав ее энтропией. Энтропия полной группы событий есть количественная мера ее неопределенности и, следовательно, информативности, количественно выражаемая как средняя функция множества вероятностей каждого из возможных исходов опыта. Иными словами, количество информации, получаемое в результате проведения опыта, равно снятой во время этого опыта неопределенности.