Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Явления переноса




 

В термодинамически неравновесных системах, т.е. в системах, для которых значения макропараметров (Т, р,) в разных ее точках различны, возникают необратимые процессы, получившие название явлений переноса. В результате таких процессов из одной локальной области системы в другую происходит перенос энергии (явление теплопроводности), массы (явление диффузии), импульса (внутреннее трение), заряда и т.д. Это ведет к выравниванию значений макропараметров по объему системы. Понятно, что перенос любой величины объясняется переходом с места на место некоторого числа частиц (молекул и атомов) в результате их хаотического движения.

Получим общее уравнение переноса вдоль произвольного направления. Направим вдоль него ось О х (рис 3). Выделим мысленно элемент плоскости площадью ∆S, перпендикулярный О х. В силу хаотичности движения за время ∆t через ∆S в направлении О х переместится N частиц:

(1)

Здесь n – концентрация молекул (атомов), а – их средняя арифметическая скорость. Переходя через ∆S, каждая молекула переносит присущие ей массу, заряд, импульс, энергию или какие-то другие свои характеристики. Обозначим значение величины, переносимое одной молекулой буквой φ. Тогда за время ∆t через площадку ∆S в направлении оси О х будет перенесено количество физической величины

(2).

Очевидно, если концентрация справа тоже n, то и справа налево перейдет столько же частиц. Т.е. результирующий перенос в этом случае равен нулю: ΔN = 0 и ΔNφ = 0.

Если же среда неоднородна, т.е. либо концентрация частиц, либо значения φ для частиц слева и справа неодинаковы, то более вероятными будут переходы из областей, где значение (nφ) больше в области, где оно меньше. Если предположить, что (nφ)1 > (nφ)2, то результирующий перенос величины φ будет определяться соотношением: . (3)

Знак «минус» в (3) отражает факт убыли величины (nφ) в направлении переноса.

Выясним, на каком расстоянии от ∆S слева и справа следует взять значения (nφ). Т.к. изменение физических характеристик молекул происходит только при соударениях, а до соударения каждая из молекул прошла расстояние равное длине свободного пробега, то можно считать, что (nφ) молекул сохраняются неизменными на расстоянии, равном длине свободного пробега влево и вправо от ∆S. Разделим и умножим правую часть (3) на 2 :

(4)

 

Распределение величин вдоль какого-либо направления определяется характеристикой, которая называется – градиент. Градиент это изменение величины на расстоянии равном единице длины.

В данном случае, в точке с координатой х 2 значение перенасимой величины – (nφ)2, а в точке х 1 – (nφ)1, тогда под градиентом величины nφ, переносимой вдоль оси О х, следует понимать отношение:

.

 

Тогда градиент величины nφ в области ∆S.

. (5)

(5) – общее уравнение переноса.

Диффузия – это перенос массы вещества. При условии, что массы молекул одинаковы (m0 = const), температура газа по объёму одинакова (T = const) и однородного по объему распределения скоростей ( = const), подставляя вместо φ массу молекулы в (5), получим:

 

, или . (6)

Это закон Фика. D = – коэффициент диффузии. [D] = м2/с.

Теплопроводность – это перенос энергии. При условии, что по всему объему газа концентрация молекул (n = const), массы молекул одинаковы (m0 = const), распределение скоростей по объёму однородно ( = const), а средняя кинетическая энергия поступательного движения одной молекулы , получим закон Фурье:

, или . (7)

 

 

– коэффициент теплопроводности. [χ] = Вт/(м·К) = кг·м/(с3·К).

Вязкость – это перенос импульса между параллельными слоями, которые упорядоченно движутся со скоростями u1 и u2. При условии, что по всему объему газа концентрация молекул n = const, массы молекул одинакова (m0 = const), распределение скоростей по объёму однородно ( = const), а модуль импульса одной молекулы, связанный со скоростью упорядоченного движения слоев φ = р = m0u, для импульса силы взаимодействия слоёв имеем:

 

, или . ()

 

Это уравнение Ньютона, которое определяет величину силы внутреннего трения (вязкости). – поперечный градиент скорости, характеризующий быстроту изменения скорости в направлении х перпендикулярном движению трущихся слоев. η – динамический коэффициент вязкости . [η] = Па·с.

 





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 839 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

80% успеха - это появиться в нужном месте в нужное время. © Вуди Аллен
==> читать все изречения...

2272 - | 2124 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.