"Криволинейные интегралы"(12.05.12)
Задача 1. Плоская материальная кривая Гс линейной плотностью
μ = μ (x, y) задана параметрическими уравнениями. Найти
массу Мг дуги кривой:
1). Г: x = 3 (t – sin t), y = 3 (1 – cos t)(t є [ 0, 2π ]); μ =
;
2). Г: x = 5
, y = 5
(t є [-
,
]); μ = | y |;
3). Г: x = cos t + t sin t, y = sin t – t cos t (t є [ 0, 2π ]); μ =
;
4). Г: x = (
– 2) sin t + 2 t cos t, y = (2 –
) cos t + 2 t sin t,
(t є [ 0, π ]); μ =
;
5). Г: x =
(cos t + sin t), y =
(cos t – sin t) (t є [ 0,
]);
μ =
;
6). Г: x = 2 cos t – cos 2 t, y = 2 sin t – sin 2 t (t є [ 0, 2π ]); μ =
;
7). Г: x = 4
, y = 4
(t є [
,
]); μ = | x y |;
8). Г: x = 2 (t – sin t), y = 2 (1 – cos t)(t є [ 0, 2π ]); μ = y;
9). Г: x = 2 (cos t + t sin t), y = 2 (sin t – t cos t) (t є [-
,
]);
μ =
;
10). Г: x =
(cos t + sin t), y =
(cos t – sin t) (t є [ 0, π ]); μ = | x y |;
11). Г: x = 2 t cos t, y =2 t sin t (t є [ 0, 1 ]); μ = 2
;
12). Г: x = 5 (t – sin t), y =5 (1 – cos t) (t є [ 0,
]); μ =
;
13). Г: x = 2 (cos t + t sin t), y = 2 (sin t - t cos t) (t є [ 0, 2π ]); μ =
;
14). Г: x = 2
, y = 2
(t є [-
,
]); μ =
;
15). Г: x = 4 (t - sin t), y = 4 (1– cos t)(t є [ 0, 2π ]); μ =
;
16). Г: x =
(cos t + sin t), y =
(cos t – sin t) (t є [ 0, π ]); μ =
;
17). Г: x = 2 cos t – cos 2 t, y = 2 sin t – sin 2 t (t є [ 0,
]); μ = y;
18). Г: x = t cos t, y = t sin t (t є [ 0, 1 ]); μ =
;
19). Г: x = 3
, y = 3
(t є [-
,
]); μ =
;
20). Г: x = 4 (cos t + t sin t), y = 4 (sin t – t cos t) (t є [ 0, π ]); μ =
;
21). Г: x =
(cos t + sin t), y =
(cos t – sin t) (t є [ 0,
]); μ =
;
22). Г: x = 3 (t – sin t), y = 3 (1 – cos t)(t є [ 0, π ]); μ = y
;
23). Г: x = 5
, y = 5
(t є [ 0,
]); μ =
;
24). Г: x = (
– 2) sin t + 2 t cos t, y = (2 –
) cos t + 2 t sin t,
(t є [ 0, π ]); μ =
;
25). Г: x = t cos t, y = t sin t (t є [ 0, 2 ]); μ =
;
26). Г: x = 2 cos t – cos 2 t, y = 2 sin t – sin 2 t (t є [ 0, π ]); μ =
;
27). Г: x = cos t + t sin t, y = sin t – t cos t (t є [ 0, 2π ]); μ = | y |;
28). Г: x = 8 (t – sin t), y = 8 (1 – cos t)(t є [ 0, π ]); μ =
;
29). Г: x = 5 (cos t + t sin t), y = 5 (sin t – t cos t) (t є [ 0,
]); μ = | x |;
30). Г: x =
(cos t + sin t), y =
(cos t – sin t) (t є [ 0,
]); μ = x.
Задача 2. Вычислить работу силового поля F вдоль дуги кривой Г:
1). F =
, Г: y = sin x, x є [
,
];
2). F = 2 (arcsin x – x ln y) i – (2 arcsin y +
) j,
Г: y = tg 2 x, x є [
,
];
3). F =
, Г: y =
, x є [
,
];
4). F = [ y + ln (1 + x) ] i + (x + 1 –
) j, Г: y = sin 2 x, x є [ 0,
];
5). F = [sin x + cos (x +
)] i + 2 y cos (x +
) j, Г: y = sh x, x є [ 0,
];
6). F =
i + (y –
) j, Г: y = ctg x, x є [
,
];
7). F = (1 + cos x –
) i +(cos y +
) j,
Г: y = sin 2 x, x є [
,
];
8). F =
,
Г: y =
, x є [ 0,
];
9). F =
, Г: y =
, x є [
,
];
10). F =
; Г: y =
, x є [ 0, 2];
11). F =
(x sin y + y cos y) i +
(x cos y – y sin y) j;
Г: y = x, x є [
,
];
12). F =
(2 x +
+
) i + 2 y
j; Г: y =
, x є [ 0,
];
13). F = (1 – y
) i +
j; Г: y =
, x є [
,
];
14). F = (2 x – y
) i +
j; Г: y = 2 x, x є [ 2, 3];
15). F =
(1 + x+ y) i +
(1– x – y) j;Г: y = ln x, x є [ 1, 2];
16). F = y
i + (y +
) j; Г: y = ch x, x є [ 0, 4];
17). F =
i + (cos y + x
) j; Г: y =
, x є [ 0,
];
18). F = (2 x cos y –
sin x) i + (2 y cos x –
sin y) j;
Г: y =
, x є [
,
];
19). F = [ y cos x + sin (x – y)] i + [sin x - sin (x – y)] j; Г: y = x, x є [
,
];
20). F = 2 (xy + sin y) i + (2 x cos y +
) j; Г: y = 3 x, x є [ 0, 3];
21). F = 2 x cos (y +
) i + [sin y + cos (y +
)] j, Г: y = ch x, x є [ 0,
];
22). F = (cos x + y
) i +
j; Г: y =
, x є [
,
];
23). F = (2 arcsin x +
) i – 2 (arcsin y – y ln x) j,
Г: y = ctg 2 x, x є [ π / 8, π / 6 ];
24). F = (y + 1 –
) i + [ x + ln (1 + y) ] j, Г: y = sin 2 x, x є [ 0, π / 2 ];
25). F = (cos x +
) i +(1+ cos y –
) j,
Г: y = sin 2 x, x є [ π / 2, 3 / 2 π ];
26). F =
(1– x – y) i +
(1 + x + y) j;Г: y = ln x, x є [ 1, 2 ];
27). F = [sin y + sin (x – y) ] i + [ x cos y –sin (x – y) ] j,
Г: y = 2 x, x є [
,
];
28). F = (x +
) i + x
j; Г: y = sh x, x є [ 0, 4];
29). F = (2 y cos x +
) i + 2 (xy + sin x) j, Г: y = 4 x, x є [ 0, 3];
30). F = (x –
) i +
j, Г: y = tg x, x є [
,
].
Задача 3. Найти циркуляцию Ц вектора a вдоль контура Г:
1). a = (x – z) i + (z – x) j + (x – y) k; Г:
= 1, z = 2 (1– x);
2). a = 2 y i + 3 x j + x k; Г:
= 4, x + y + z = 2;
3). a = x i –
/ 3 j + y k; Г:
= 1, 8 x – 4 y – 4 z = 1;
4). a = x i – 2
j + y k; Г: 16
+ 9
= 144, z –2 x + y = 1;
5). a = – z i – x j + xz k; Г:
+
= 25, z = 4;
6). a = x i – 3
j + y k; Г: 16
+
= 16, z – 2 x + y = 3;
7). a = –
i + 4 j + z k; Г:
= 4, z = 4;
8). a = xy i + yz j + xz k; Г:
= 9, x + y + z = 1;
9). a = x z i – j + y k; Г:
= 3, z = 1;
10). a = y i – 2 x j +
k; Г: z = 4 (
) + 2, z = 6;
11). a = x i + yz j – x k; Г:
= 1, x + y + z = 1;
12). a = 2 y i + 5 z j + 3 x k; Г: 2 (
) = 1, x + y + z = 3;
13). a = 4 x i – yz j + x k; Г:
= 1, x + y + z = 1;
14). a = 2 (2 – xy) i – yz j – xz k; Г:
= 4, x + y + z = 1;
15). a = 3 z i – 2 y j + 2 y k; Г:
= 4, 2 x –3 y –2 z = 1;
16). a = yz i + 2 xz j + xy k; Г:
= 9, z = 4;
17). a = (y – z) i + (z – x) j + (x – y) k; Г:
= 4, 2 z +3 x = 6;
18). a = 2 y i – z j + x k; Г:
= 1, x + y + z = 4;
19). a = 3 y i – 3 x j + x k; Г:
= 9, x + y + z = 3;
20). a = (y – z) i + (z – x) j + (x – y) k; Г:
= 16, 4 z + x =4;
21). a = x i +
j + y k; Г: 4
+
= 4, 2 x – y – z = 1;
22). a = y i – x j + z k; Г:
+
= 1, z = 3;
23). a = –
i + 2 j + xz k; Г:
= 2, z = 1;
24). a = 4 i + 3 x j + 3 xz k; Г:
= 9, z = 3;
25). a = 4 y i – 3 x j + x k; Г:
= 16, x + y + z = 4;
26). a = 2 y i + j – 2 yz k; Г:
= 4, z = 2;
27). a = x z i – j + y k; Г:
= 1, z = 4;
28). a = 4 x i + 2 j – x y k; Г:
= 3, z = 7;
29). a = y i – x j + 2 z k; Г:
= 1, z = 2;
30). a = z i + x j + y k; Г:
= 4, z = 0.






