Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Технология получения




СТЕКЛЯННЫЕ ВОЛОКНА (СВ)

1. Природа СВ и способы получения

2. Виды и формы СВ

3. Основные свойства СВ

4. Ассортимент и применение

5. Высокосиликаты (кварцевые волокна)

 

Более 3500 лет человечеству известно о возможности вытягивания различных изделий из расплавленного стекла. В XIX в. было теоретически предсказано, что стекло, вытянутое в длинное волокно, пригодно для использования в различных текстильных изделиях. Однако промышленного производства стекловолокон реально не существовало до 1939 г. Начало коммерческого выпуска стекловолокон связано с образованием фирмы «Оуенз Корнинг файбергласс».

СВ сочетают сравнительно малую плотность с высокими теплостойкостью, химической стойкостью и прочностью, низкой теплопроводностью и коэф. термического расширения, они негорючи, стойки к биологическому воздействию.

Технология получения

Известно два основных вида СВ: непрерывное и штапельное. Для первого характерны неограничено большая длина, прямолинейность и параллельное расположение волокон в нити; для второго - небольшая длина, извитость и хаотическое расположение волокон в пространстве.

Существуют три основных способа получения стекловолокна:

1)вытягивание волокон из расплавленной массы через фильеры (одностадийный процесс);

2)вытягивание волокон из стеклянных штабиков при их разогреве (двухстадийный процесс);

3) получение штапельного волокна путем расчленения струй стекломассы под воздействием центробежных сил или потоков воздуха, газа, пара.

Непрерывные СВ изготавливаются вытягиванием волокон из расплавленной стекломассы через фильеры одно- или двух-стадийным способом либо из стеклянных штабиков. Штапельное волокно формуется путем вытягивания непрерывного СВ на струи расплавленного стекла с последующим разрывом его на отрезки ограниченной длины (способ воздушного вытягивания) или разделением струи (пленки) расплавленного стекла на отдельные объемы, растягиваемые в короткие волокна раздувом (дутьевой способ), центробежным или комбинированным способами.

Состав стекла определяет способ, условия формования и область применения СВ. Для технического назначения СВ получают из стекол различных составов (таблица 1), СВ высокопрочные высокомодульные, с низкой и высокой диэлектрической проницаемостью, полупроводящие и другие - из стекол специальных составов.

Таблица 1 - Состав стекловолокон, %

Состав Марка стекла
А (высоко-щелочное) С(химически-стойкое) Е (электроизо-ляцнонное) S (высоко-прочное)
Окись кремния 72,00 64,6 54,3 64,20
Окись алюминия 0,6 4,1 15,2 24,80
Окись железа 0,21
Окись кальция 10,00 13,2 17,2 0,01
Окись магния 2,5 3,3 4,7 10,27
Окись натрия 14,2 7,7 0,6 0,27
Окись калия 1,7  
Окись бора 4,7 8,0 0,01
Окись бария 0,9 0,20
Прочие вещества 0,7   —.

Большую часть стекловолокон получают одностадийным методом. Кварцевый песок, известняк, борная кислота и другие компоненты (глина, уголь и шпаты) перемешиваются и плавятся в высокотемпературных печах. Температура плавления для каждой композиции своя, но в среднем она составляет ~ 1260°С. Расплав стекла поступает непосредственно в оборудование для расплавного формования (рисунок 1).

1 - глина; 2 - известняк; 3 - уголь; 4 - кварцевый песок; 5 - флюорит; 6 - борная кислота; 7 - автоматические дозаторы: 8 - смеситель; 9, 10 - бункера; 11 - шнековый питатель; 12 – ванна; 13 - секция приготовления замасливателя (шлихты); 14 - платиновые фильеры (бушинги с электронагревом и автоматическим управлением); 15 — замасливатель; 16 - высокоскоростное намоточное устройство; 17, 27 - посты контроля и взвешивания; 18 - камера для кондиционирования волокна; 19 - крутильные машины; 20 - участок отделки и упаковки пряжи; 21 - участок термообработки; 22 - шпулярники; 23 - намоточная машина для ровинга; 24 - резальная машина; 25 - ровинг; 26 - резаное волокно (штапель); 28 - участок упаковки; 29 - участок отгрузки продукции

Рисунок 1 - Схема одностадийного получения стекловолокна:

Непрерывные волокна получают из предварительно расплавленного стекла на аппаратах для вытяжки стекловолокон (емкость для расплавленного стекла из платинового сплава называется бушингом - стеклоплавильный сосуд, имеющий форму лодочки). Под действием гидростатического давления расплав стекла вытекает через тонкие отверстия фильеры диаметром 0,8...3,0 мм в днище бушинга. Экструдируемые из каждого отверстия струи, подвергают интенсивному механическому растяжению до диаметра 3...19 мкм, после закалки в подфильерном холодильнике (в потоке водяных брызг) собирают в нить и пропускают через зону, в которой на волокно наносится покрытие - замасливатель, повышающий компактность нити.

Собранные в единый пучок элементарные волокна называют одиночной нитью или «стренга». Скорость вытягивания готовой нити стекловолоконной стренги составляет от 20 до 50 м/с. Прядильный кулич кондиционируется или проходит сушку для дальнейшей переработки в товарную продукцию.

Для получения штапельного стекловолокна расплавленная стекломасса, вытекающая из отверстий фильеры, вытягивается и разрывается в струе воздуха. Волокна длиной 200... 380 мм собираются вместе на вращающемся барабане и объединяются в стренгу. Затем стекловолокно проходит кондиционирование или сушку, если это необходимо для дальнейших технологических процессов.

Каждое элементарное волокно, вытягиваемое из отверстий фильеры, должно контролироваться для обеспечения стабильности размеров и свойств как элементарных волокон, так и стренг. Этот контроль достигается с помощью регулирования вязкости и температуры расплава стекломассы, а также скорости вытяжки (скорости приема нити или скорости истечения струи). Следовательно, можно получать большее число волокон различной тонины, меняя число отверстий в бушинге и условия вытяжки.

При двухстадийном процессе расплав перерабатывается в начале в стеклосферы, которые затем поступают в плавильные печи. После вторичной плавки расплав подается на установки для формования.

Характеристики ряда комплексных нитей из стекла различного состава приведены в таблице 2.

Таблица 6 – Основные характеристики крученных комплексных нитей

Марка Техническая документация Линейная плотность, текс Крутка, кр/м Тип замасливателя, потери при прокаливании, % (масс.)
Нити из алюмоборосиликатного стекла
БС6-2бх1х4(у) ТУ6-11-116-75 104±12 100±10 ПЭ н/б 2,0
БС5-3,4х1х2-80 ТУ6-11-383-76 6,8±0,5 150±15 № 80 0,8-2,0
Нити из бесщелочного безборного стекла Т-273А
ТС8-26х1х4 ТУ6-11-431-77 104±6   ПЭ1,5-0,5
ТС8-26х1х2 То же 52±4   ПЭ1,5-0,5
Нити кремнеземные из стекла № 11
КПС6-180 ОСТ-П-389-74 18О±14 150±10  
КПС6-180-13 То же То же 150±10 № 13
КПС6-170-БА ОСТ-11 -389-74 170±20 150±10 № 13
Нити кварцевые
КС11-7х4хЗ ТУ6-11-82-75   100±15 ПЭ н/б 2,5
КС11-17x2x3 То же   100±15 То же

 

Обозначение марки крученой комплексной нити, например: БС6-3,4х1х2 (150)-80; ТС8-26х1х2; К11С6-180-БА; КС11-17x4x3, состоит из трех частей:

1– тип стекла и номинальный диаметр элементарной нити (волокна), где Б – бесщелочное алюмоборосиликатное, Т – стекло состава Т-273А, К11 – кремнеземные нити из стекла N11, К – кварцевая нить, С – стеклонить непрерывная, 6,8,6,11 – диаметр элементарной нити, мкм;

2 — номинальная линейная плотность комплексной нити (3,4;26;180;17), текс. Цифровое обозначение после знака "х": 1 — количество одиночных нитей в комплексной, 2 — количество скручиваемых одиночных нитей; цифры в скобках — количество кручений на 1 м нити;

3— тип замасливателя (например, № 80). При выработке нити на технологическом замасливателе из парафиновой эмульсии индекс в марке нити не указывают. В кремнеземных нитях: БА — безусадочная аппретированная нить.

Стекло является аморфным материалом, занимающим по своим физико-механическим свойствам промежуточное положение между твердым телом и жидкостью. С одной стороны, оно не обладает кристаллической структурой твердого тела, с другой - не обладает текучестью, проявляющейся в жидкостях. Химически стекла состоят в основном из кремнеземной (SiO2) основы, существующей в виде полимерных цепочек (— SiO4 —). Однако диоксид кремния, т, е. кварц, требует высоких температур для размягчения и вытягивания. Поэтому необходима модификация состава для снижения уровня рабочих температур, при которых стекломасса обладает вязкостью, позволяющей проводить вытяжку нитей. Способы модификации состава могут быть разделены по решению задач на две группы: получение стекол с определенными свойствами и приспособление к нуждам технологии.

Высокощелочные стекла (широко известные как натриевые или бутылочные стекла) являются наиболее распространенными. Они используются в основном для производства емкостей и листового стекла. Высокощелочные композиции (известково-натриевое стекло), известные под маркой А-стекла, выгодны для получения волокон, обладающих высокой хемостойкостыо.

Вместе с тем высокое содержание щелочи в стекле определяет его невысокие электрические свойства, в то время как хорошие электроизоляционные свойства определили развитие стекол на основе низкощелочных композиций (алюмоборосиликаты), получивших наименование Е-стекол. В настоящее время из Е-стекол изготовляется большая часть текстильного ассортимента стекловолокон.

Для специальных областей применения, когда не подходят волокна из А - стекла и Е-стекла, могут быть созданы композиции с необходимыми характеристиками. Когда требуется особо высокая хемостойкость, может быть использовано волокно из С-стекла (натрийборосиликатная композиция). Для создания волокон с высокими прочностными характеристиками (например, для материалов несущих конструкций в самолето- и ракетостроении) используют S - стекла (C1-стекла) (магнийалюмосиликатные композиции). Повышение прочностных характеристик волокон из S-стекла приблизительно на 40 % относительно волокон из Е - стекла является результатом более высокой прочности исходной композиции. Кроме того, S - стекла имеют более высокую теплостойкость, нежели Е – стекла. Волокна из S - стекла обладают наряду с высоким качественным уровнем свойств довольно умеренным уровнем стоимости.

Образцы специальных композиций стекол создаются для исследования возможности создания материалов со специальными свойствами.

Композиция М-стекла позволила получать стекловолокна с высоким модулем упругости (Е = 11З ГПа). Однако присутствие бериллия (окиси, бериллия) препятствует созданию коммерческой продукция.

Низкие диэлектрические свойства D-стекол послужили причиной исследования возможности их применения в электронике. Они обладают низкой диэлектрической проницаемостью, по сравнению с Е-стеклами и могут найти применение при создании обтекателей антенн радиолокаторов.

L-стекла (свинцовые) хороши для радиационной защиты. Стекловолокна из такой композиции могут быть использованы для защитной одежды людей работающих с рентгеновским излучением, и как «меченая» пряжа в композитах, которая не разрушается под воздействием рентгеновского излучения.

Обработка поверхности. Поверхность непрерывных СВ в процессе их вытягивания из фильер покрывается замасливателем, который соединяет волокна в нить, предотвращает истирание волокон, защищает их от разрушения во время текстильной переработки, препятствует накоплению зарядов статического электричества при трений.

Применяются два вида замасливателей: технологические (текстильные) и прямые (активные, гидрофобно-адгезионные). Первые служат только для обеспечения текстильной переработки стеклонитей и состоят из клеящих и пластифицирующих (или смазывающих) веществ, обычно растворенных или эмульгированных в воде, реже - в органических растворителях. В отечественной промышленности наиболее часто применяется водно-эмульсионный замасливатель называемый «парафиновая эмульсия». За рубежом используют замасливатели на основе крахмала. Текстильные замасливатели ухудшают адгезию волокна к полимерной матрице, поэтому перед изготовлением КМ их необходимо удалять.

После удаления замасливателя на поверхность стеклянного наполнителя в ряде случаев наносят аппреты - вещества, способствующие созданию прочной связи на границе СВ - связующее. В качестве аппретов применяют обычно кремнийорганические и металлорганические соединения. Удаление текстильного замасливателя и последующее аппретирование усложняет и удорожает подготовку стеклонаполнителей, поэтому более эффективно применение прямых (активных) замасливателей, в состав которых наряду с пленкообразующими смазками входят и аппреты. Прямой замасливатель выполняет двойную функцию - предохраняет волокна от разрушения и усиливает адгезию между стеклом и полимерной матрицей.





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 3327 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наглость – это ругаться с преподавателем по поводу четверки, хотя перед экзаменом уверен, что не знаешь даже на два. © Неизвестно
==> читать все изречения...

2668 - | 2233 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.