Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


В. Внутренняя активность лекарственных веществ. Понятие об агонистах и антагонистах рецепторов




Вещества, которые обладают аффинитетом, могут обладать внутренней актив­ностью.

Внутренняя активность - способность вещества при взаимодейст­вии с рецептором стимулировать его и таким образом вызывать определенные эффекты.

В зависимости от наличия внутренней активности лекарственные вещества раз­деляют на: агонисты и антагонисты.

Агонисты (от греч. agonistes — соперник, agon — борьба) или миметики — вещества, обладающие аффинитетом и внутренней активностью. При взаимодей­ствии со специфическими рецепторами они стимулируют их, т.е. вызывают изменения конформации рецепторов, в результате чего возникает цепь биохими­ческих реакций и развиваются определенные фармакологические эффекты.

Полные агонисты, взаимодействуя с рецепторами, вызывают максималь­но возможный эффект (обладают максимальной внутренней активностью).

Частичные агонисты при взаимодействии с рецепторами вызывают эффект, меньший максимального (не обладают максимальной внутренней ак­тивностью).

Антагонисты (от греч. antagonisma - соперничество, anti - против, agon -борьба) — вещества, обладающие аффинитетом, но лишенные внутренней актив­ности. Они связываются с рецепторами и препятствуют действию на рецепторы эндогенных агонистов (нейромедиаторов, гормонов). Поэтому их также называ­ют блокаторами рецепторов. Фармакологические эффекты антагонистов обусловлены устранением или уменьшением действия эндогенных агонистов дан­ных рецепторов. При этом в основном возникают эффекты, противоположные эффектам агонистов. Так, ацетилхолин вызывает брадикардию, а антагонист М-холинорецепторов атропин, устраняя действие ацетилхолина на сердце, по­вышает частоту сердечных сокращений.

Если антагонисты занимают те же рецепторы, что и агонисты, они могут вы­теснять друг друга из связи с рецепторами. Такой антагонизм называют конку­рентным, а антагонисты называются конкурентными антагонис­тами. Конкурентный антагонизм зависит от сравнительного аффинитета конкурирующих веществ и их концентрации. В достаточно высоких концентра­циях даже вещество с более низким аффинитетом может вытеснить вещество с более высоким аффинитетом из связи с рецептором. Конкурентные антагонисты часто используют для устранения токсических эффектов лекарственных веществ.

Частичные антагонисты также могут конкурировать с полными агонистами за места связывания. Вытесняя полные агонисты из связи с рецепторами, частич­ные агонисты уменьшают эффекты полных агонистов и поэтому в клинической практике могут использоваться вместо антагонистов. Например, частичные аго­нисты β-адренорецепторов (окспренолол, пиндолол) также, как антагонисты этих рецепторов (пропранолол, атенолол), используются при лечении гипертоничес­кой болезни.

Если антагонисты занимают другие участки макромолекулы, не относящие­ся к специфическому рецептору, но взаимосвязанные с ним, то их называют неконкурентными антагонистами.

Некоторые лекарственные вещества сочетают способность стимулировать один подтип рецепторов и блокировать другой. Такие вещества обозначают как


агонисты-антагонисты. Так, наркотический анальгетик пентазоцин является антагонистом µ -, и агонистом δ-, и κ-опиоидных рецепторов.

Другие «мишени» для лекарственных веществ

Лекарственные вещества могут действовать и на другие «мишени», включая ионные каналы, ферменты, транспортные белки.

Одной из основных «мишеней» для лекарственных веществ являются потен­циал озависимые ионные каналы, которые избирательно проводят Na+, Ca2+, К+ и другие ионы через клеточную мембрану. В отличие от рецептор-управляемых ион­ных каналов, которые открываются при взаимодействии вещества с рецептором (см. раздел «Рецепторы»), эти каналы регулируются потенциалом действия (от­крываются при деполяризации клеточной мембраны). Лекарственные вещества могут или блокировать потенциалозависимые ионные каналы и таким образом нарушать проникновение ионов по этим каналам через мембрану клетки, или активировать эти каналы, т.е. способствовать их открыванию и прохождению ионных токов. Многие лекарственные вещества, которые широко используются в медицинской практике, являются блокаторами ионных каналов.

Известно, что местные анестетики блокируют потенциалозависимые Na+-Ka-налы. К числу блокаторов Na+-каналов относятся и многие противоаритмичес-кие средства (хинидин, лидокаин, прокаинамид). Некоторые противоэпилепти-ческие средства (дифенин, карбамазепин) также блокируют потенциалозависимые Na+-каналы и с этим связана их противосудорожная активность. Б локаторы на­триевых каналов нарушают вхождение в клетку ионов Na+ и таким образом пре­пятствуют деполяризации клеточной мембраны.

Весьма эффективными при лечении многих сердечно-сосудистых заболеваний (гипертонической болезни, сердечных аритмий, стенокардии) оказались блокато-ры Са2+-каналов (нифедипин, верапамил и др.). Ионы Са2+ принимают участие во многих физиологических процессах: в сокращении гладких мышц, в генерации импульсов в синоатриальном узле и проведении возбуждения по атриовентрику-лярному узлу, в агрегации тромбоцитов и др. Блокаторы Са2+-каналов препятству­ют вхождению ионов Са2+ внутрь клетки через потенциалозависимые каналы и вызывают расслабление гладких мышц сосудов, уменьшение частоты сокраще­ний сердца и атриовентрикулярной проводимости, нарушают агрегацию тромбо­цитов. Некоторые блокаторы кальциевых каналов (нимодипин, циннаризин) пре­имущественно расширяют сосуды мозга и оказывают нейропротекторное действие (препятствуют поступлению избыточного количества Са2+ внутрь нейронов).

Среди лекарственных веществ имеются как активаторы, так и блокаторы по-тенциалозависимых К+-каналов.

Активаторы К+-каналов (миноксидил, диазоксид) нашли применение в каче­стве гипотензивных средств. Они способствуют открыванию К+-каналов и выхо­ду ионов К+ из клетки — это приводит к гиперполяризации клеточной мембраны и уменьшению тонуса гладких мышц сосудов. В результате происходит снижение артериального давления.

Некоторые вещества, блокирующие потенциалозависимые К+-каналы (амио-дарон, соталол), используются при лечении аритмий сердца. Они препятствуют выходу К+ из кардиомиоцитов, вследствие чего увеличивают продолжительность потенциала действия и удлиняют эффективный рефрактерный период.

АТФ-зависимые К+-каналы (эти каналы открываются под действием АТФ) в бета-клетках поджелудочной железы регулируют секрецию инсулина. Их блока-


да приводит к повышению секреции инсулина. Блокаторы этих каналов (произ­водные сульфонилмочевины) используются как противодиабетические средства.

Многие лекарственные вещества являются ингибиторами ферментов. Инги­биторы моноаминоксидазы (МАО) нарушают метаболизм (окислительное деза-минирование) катехоламинов (норадреналина, дофамина, серотонина) и повы­шают их содержание в ЦНС. На этом принципе основано действие антидепрессантов - ингибиторов МАО (ниаламид, пиразидол). Механизм дей­ствия нестероидных противовоспалительных средств связан с ингибированием циклооксигеназы, в результате снижается биосинтез простагландина Е2 и про-стациклина, обладающих провосп^лительным действием. Ингибиторы ацетилхо-линэстеразы (антихолинэстеразные средства) препятствуют гидролизу ацетилхо-лина и повышают его содержание в синаптической щели. Эти препараты применяют для повышения тонуса гладкомышечных органов (ЖКТ, мочевого пузыря) и скелетных мышц.

Лекарственные средства могут действовать на транспортные системы (транс­портные белки), которые переносят молекулы некоторых веществ или ионы че­рез мембраны клеток. Например, трициклические антидепрессанты блокируют транспортные белки, которые переносят норадреналин и серотонин через преси-наптическую мембрану нервного окончания (блокируют обратный нейрональный захват норадреналина и серотонина). Сердечные гликозиды блокируют Na+, K+-АТФ-азу мембран кардиомиоцитов, которая осуществляет транспорт Na+H3 клетки в обмен на К+.

Возможны и другие «мишени», на которые могут действовать лекарственные вещества. Так, антацидные средства действуют на хлористоводородную кислоту желудка, нейтрализуя ее, и поэтому используются при повышенной кислотности желудочного сока (гиперацидном гастрите, язве желудка).

Перспективной «мишенью» для лекарственных средств являются гены. С по­мощью избирательно действующих лекарственных средств возможно оказывать прямое влияние на функцию определенных генов.





Поделиться с друзьями:


Дата добавления: 2015-09-20; Мы поможем в написании ваших работ!; просмотров: 750 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2213 - | 2048 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.017 с.