Практическая работа №6
Методы адресации
Цель работы: ознакомление с возможными методами адресации операндов и команд микропроцессоров Intel x86; получение навыков использования команд с использованием различных методов адресации, использования массивов данных при разработке программ на языке Ассемблер.
Краткие теоретические сведения
- Сегментирование памяти
Говоря об адресации, нельзя обойти вопрос о сегментировании памяти, применяемой в некоторых процессорах, например в процессорах IBM PC-совместимых персональных компьютеров.
В процессоре Intel 8086 сегментирование памяти организовано следующим образом.
Вся память системы представляется не в виде непрерывного пространства, а в виде нескольких кусков — сегментов заданного размера (по 64 Кбайта), положение которых в пространстве памяти можно изменять программным путем.
Для хранения кодов адресов памяти используются не отдельные регистры, а пары регистров:
· сегментный регистр определяет адрес начала сегмента (то есть положение сегмента в памяти);
· регистр указателя (регистр смещения) определяет положение рабочего адреса внутри сегмента.
При этом физический 20-разрядный адрес памяти, выставляемый на внешнюю шину адреса, образуется так, как показано на рис. 6.1, то есть путем сложения смещения и адреса сегмента со сдвигом на 4 бита. Положение этого адреса в памяти показано на рис. 6.2.
Сегмент может начинаться только на 16-байтной границе памяти (так как адрес начала сегмента, по сути, имеет четыре младших нулевых разряда, как видно из рис. 6.1), то есть с адреса, кратного 16. Эти допустимые границы сегментов называются границами параграфов.
Отметим, что введение сегментирования, прежде всего, связано с тем, что внутренние регистры процессора 16-разрядные, а физический адрес памяти 20-разрядный (16-разрядный адрес позволяет использовать память только в 64 Кбайт, что явно недостаточно).
Рис. 6.1. Формирование физического адреса памяти из адреса сегмента и смещения.
Рис. 6.2. Физический адрес в сегменте (все коды — шестнадцатеричные).
Применяются и более сложные методы сегментирования памяти. Например, в процессоре Intel 80286 в так называемом защищенном режиме адрес памяти вычисляется в соответствии с рис. 6.3.
В сегментном регистре в данном случае хранится не базовый (начальный) адрес сегментов, а коды селекторов, определяющие адреса в памяти, по которым хранятся дескрипторы (то есть описатели) сегментов. Область памяти с дескрипторами называется таблицей дескрипторов. Каждый дескриптор сегмента содержит базовый адрес сегмента, размер сегмента (от 1 до 64 Кбайт) и его атрибуты. Базовый адрес сегмента имеет разрядность 24 бит, что обеспечивает адресацию 16 Мбайт физической памяти.
Рис. 6.3. Адресация памяти в защищенном режиме процессора Intel 80286.
Таким образом, на сумматор, вычисляющий физический адрес памяти, подается не содержимое сегментного регистра, как в предыдущем случае, а базовый адрес сегмента из таблицы дескрипторов.
Еще более сложный метод адресации памяти с сегментированием использован в процессоре Intel 80386 и в более поздних моделях процессоров фирмы Intel. Этот метод иллюстрируется рис. 6.4.
Адрес памяти (физический адрес) вычисляется в три этапа. Сначала вычисляется так называемый эффективный адрес (32-разрядный) путем суммирования трех компонентов: базы, индекса и смещения (Base, Index, Displacement), причем возможно умножение индекса на масштаб (Scale). Эти компоненты имеют следующий смысл:
Рис. 6.4. Формирование физического адреса памяти процессора 80386 в защищенном режиме.
- смещение — это 8-, 16- или 32-разрядное число, включенное в команду.
- база — это содержимое базового регистра процессора. Обычно оно используется для указания на начало некоторого массива.
- индекс — это содержимое индексного регистра процессора. Обычно оно используется для выбора одного из элементов массива.
- масштаб — это множитель (он может быть равен 1, 2, 4 или 8), указанный в коде команды, на который перед суммированием с другими компонентами умножается индекс. Он используется для указания размера элемента массива.
Затем специальный блок сегментации вычисляет 32-разрядный линейный адрес, который представляет собой сумму базового адреса сегмента из сегментного регистра с эффективным адресом. Наконец, физический 32-битный адрес памяти образуется путем преобразования линейного адреса блоком страничной переадресации, который осуществляет перевод линейного адреса в физический страницами по 4 Кбайта.
В любом случае сегментирование позволяет выделить в памяти один или несколько сегментов для данных и один или несколько сегментов для программ. Переход от одного сегмента к другому сводится всего лишь к изменению содержимого сегментного регистра. Иногда это бывает очень удобно. Но для программиста работать с сегментированной памятью обычно сложнее, чем с непрерывной, несегментированной памятью, так как приходится следить за границами сегментов, за их описанием, переключением и т.д.
- Адресация байтов и слов
Многие процессоры, имеющие разрядность 16 или 32, способны адресовать не только целое слово в памяти (16-разрядное или 32-разрядное), но и отдельные байты. Каждому байту в каждом слове при этом отводится свой адрес.
Так, в случае 16-разрядных процессоров все слова в памяти (16-разрядные) имеют четные адреса. А байты, входящие в эти слова, могут иметь как четные адреса, так и нечетные.
Например, пусть 16-разрядная ячейка памяти имеет адрес 23420, и в ней хранится код 2А5Е (рис. 6.5).
Рис. 6.5. Адресация слов и байтов.
При обращении к целому слову (с содержимым 2А5Е) процессор выставляет адрес 23420. При обращении к младшему байту этой ячейки (с содержимым 5Е) процессор выставляет тот же самый адрес 23420, но использует команду, адресующую байт, а не слово. При обращении к старшему байту этой же ячейки (с содержимым 2А) процессор выставляет адрес 23421 и использует команду, адресующую байт. Следующая по порядку 16-разрядная ячейка памяти с содержимым 487F будет иметь адрес 23422, то есть опять же четный. Ее байты будут иметь адреса 23422 и 23423.
Для различия байтовых и словных циклов обмена на магистрали в шине управления предусматривается специальный сигнал байтового обмена. Для работы с байтами в систему команд процессора вводятся специальные команды или предусматриваются методы байтовой адресации.
- Методы адресации
Большая часть команд процессора работает с кодами данных (операндами). Одни команды требуют входных операндов (одного или двух), другие выдают выходные операнды (чаще один операнд). Входные операнды называются еще операндами-источниками, а выходные называются операндами-приемниками. Все эти коды операндов (входные и выходные) должны где-то располагаться. Они могут находиться во внутренних регистрах процессора (наиболее удобный и быстрый вариант). Они могут располагаться в системной памяти (самый распространенный вариант). Наконец, они могут находиться в устройствах ввода/вывода (наиболее редкий случай). Определение места положения операндов производится кодом команды. Причем существуют разные методы, с помощью которых код команды может определить, откуда брать входной операнд и куда помещать выходной операнд. Эти методы называются методами адресации. Эффективность выбранных методов адресации во многом определяет эффективность работы всего процессора в целом.