Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры решения задач

Задача 1. Движение материальной точки задано уравнением (м). Определить скорость точки в моменты времени t1=2 с и

t2=4 с, а также среднюю скорость в интервале времени от t1 до t2.

 

Решение:

Точка прямолинейно движется вдоль оси OX. Модуль мгновенной скорости в этом случае

(м/с).

Найдем V1 и V2:

, м/с;

, м/с.

Средняя скорость

где

м/с.

 

Ответ: V1=7 м/с, V2=11,4 м/с, м/с

 

Задача 2. Тело массой кг движется по вертикальной стене. Сила действует под углом a = 300 к вертикали. Коэффициент трения . Найти величину силы , если ускорение тела направлено вверх и равно a = 2 м/с2 .

 

Решение:

 
 

На тело действуют четыре силы: сила , сила тяжести , сила реакции опоры и сила трения . Покажем эти силы на рисунке.

Запишем II закон Ньютона в виде

. (1) Ось OY направим вертикально вверх, ось OX – перпендикулярно стене. В проекциях на оси координат уравнение (1) примет вид

OХ: (2)

OY: . (3)

Сила трения скольжения

. (4)

Используя (2) и (4), перепишем (3):

.

Отсюда

Н.

Ответ: Н.

Задача 3. Частица массой m1, имеющая скорость V2, налетела на покоящийся шар массой m2 и отскочила от него со скоростью U1 под прямым углом к направлению первоначального движения. Какова скорость U2 шара после соударения? Считать удар центральным.

 

Решение:

Используя закон сохранения импульса, получим

На рисунке покажем импульсы тел.

 
 

Модуль импульса шара найдём, используя теорему Пифагора:

,

отсюда

Ответ:

 

Задача 4. Шар массой M висит на нити длиной l. В шар попадает горизонтально летящая пуля и застревает в нём. С какой скоростью V0 должна лететь пуля, чтобы в результате попадания пули шар мог сделать на нити полный оборот в вертикальной плоскости? Размерами шара пренебречь. В верхней точке сила натяжения нити равна нулю. Масса пули m.

 

Решение:

 

 

 
 

 

Обозначим: V – скорость шара с пулей сразу после неупругого соударения, U – скорость шара с пулей в верхней точке.

В проекциях на ось OX закон сохранения импульса имеет вид

mV0 = (m + M) V. (1)

Выберем нулевой уровень отсчёта потенциальной энергии, совпадающий с осью OX.

В нижнем положении шар с пулей обладает только кинетической энергией ; в верхней точке - кинетической и потенциальной (m+M)gh энергиями, где h = 2R =2l.

Закон сохранения механической энергии запишем в виде

. (2)

После преобразований

. (2¢)

В верхней точке на шар с пулей действует сила тяжести, по условию задачи сила натяжения нити равна нулю. Используем II закон Ньютона:

(3)

где

Из уравнения (1) выразим V0:

. (4)

Из уравнения (3)

(5)

Подставив (5) в (2¢), получим

Найдем V0, вернувшись к (4)

Ответ:

 

Задача 5. По наклонной плоскости, образующей угол a с горизонтом, скатывается без скольжения 1) сплошной однородный диск, 2) шар. Определить линейное ускорение их центров. Предварительно вывести общую формулу.

 

Решение:

Тело участвует в сложном движении:

1)поступательно движется вниз по наклонной плоскости;

2) вращается вокруг оси, проходящей через центр тяжести.

На рисунке покажем силы, действующие на тело.

 
 

Для поступательного движения запишем II закон Ньютона в проекциях на ось OX.

. (1)

Для вращательного движения используем закон

, (2)

где - момент инерции, - угловое ускорение.

Момент силы создает сила трения, плечо которой равно R, две другие силы не создают вращающего момента.

.

Перепишем (2):

.

Выразим силу трения из (3) и подставим в (1):

Отсюда

. (4)

Зная моменты инерции диска и шара

,

найдем ускорения диска и шара

,

Ответ: ,

 

Задача 6. Две частицы движутся навстречу друг другу со скоростями . Найти их относительную скорость.

 

Решение:

Согласно теореме сложения скоростей в теории относительности,

, где -скорости первой и второй частицы; - их относительная скорость: С- скорость света в вакууме.

Это означает, что, во первых, ни в какой инерциальной системе отсчёта скорость процесса не может превзойти скорость света, и, во вторых, скорость распространения света в вакууме абсолютна.

Ответ: = 0,91С.

 

Задача 7. В баллоне объёмом 20 л находится аргон под давлением 1,0 Мпа и температуре 300 К. После того как из баллона было взято 20,0 г аргона, температура в баллоне понизилась до 280 К. Определить давление газа, оставшегося в баллоне.

 

Решение:

Для решения задачи воспользуемся уравнением состояния идеального газа, применив его к начальному и конечному состояниям газа:

, (1)

. (2)

Из уравнений (1) и (2) выразим m1 и m2 и найдём их разность:

,

откуда находим

. (3)

Проверку решения проведем по размерности физических величин. В правую часть вместо символов величин подставим их единицы измерения. В правой части два слагаемых. Первое из них имеет размерность давления, так как состоит из двух множителей, первый из которых – давление, а второй – безразмерный. Проверим второе слагаемое:

.

Вычисления произведём по формуле (3) с учётом, что для аргона кг/моль.

 

Ответ: 875 кПа

Задача 8. Во сколько раз следует изотермически увеличить объем идеального газа в количестве 3 моль, чтобы его энтропия увеличилась на

25 Дж/К?

Решение:

Для обратимого процесса ,

где .

Так как процесс изотермический, то для идеального газа , а элементарная работа равна

.

Изменение энтропии для изотермического процесса будет равно

.

Из последнего соотношения находим

.

Показатель экспоненты – величина безразмерная.

Вычисления: .

Ответ: .

 



<== предыдущая лекция | следующая лекция ==>
Реальные газы, жидкости и твердые тела | Контрольная работа №1
Поделиться с друзьями:


Дата добавления: 2015-02-12; Мы поможем в написании ваших работ!; просмотров: 483 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Победа - это еще не все, все - это постоянное желание побеждать. © Винс Ломбарди
==> читать все изречения...

2212 - | 2047 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.