Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


В основе нормирования погрешностей средств измерений лежат следующие основные положения




1. В качестве норм указывают пределы допускаемых погрешностей, включающие в себя систематические и случайные составляющие.

Под пределом допускаемой погрешности понимается наибольшее значение погрешности средства измерений, при котором оно еще признается годным к применению. Обычно устанавливают пределы, т.е. зоны, за которую не должна выходить погрешность. Данная норма отражает то положение, что средства измерений можно применять с однократным считыванием показаний.

2. Порознь нормируют все свойства СИ, влияющие на их точность: отдельно нормируют основную погрешность, по отдельности – все дополнительные погрешности и другие свойства, влияющие на точность измерений. При выполнении данного требования обеспечивается максимальная однородность средств измерений одного типа, то есть близкие значения дополнительных погрешностей, обусловленных одними и теми же факторами. Это дает возможность заменять один прибор другим однотипным без возможного увеличения суммарной погрешности.

Пределы допускаемых погрешностей средств измерения применяются как для абсолютной, так и для относительной погрешности.

Пределы допускаемой абсолютной погрешности устанавливают по формуле ∆ = ± а для аддитивной погрешности. Для мультипликативной погрешности они устанавливаются в виде линейной зависимости

∆ = ± (а + bх),

где х – показание измерительного прибора, а и b – положительные числа, не зависящие от х.

Предел допускаемой относительной погрешности (в относительных единицах) для мультипликативной погрешности устанавливают по формуле

δ = ∆ / х = ± c.

Для аддитивной погрешности формула имеет вид:

δ = ∆ / х = ± [ c + d (xk / x – 1)] где xk — конечное значение диапазона измерений прибора; c и d - относительные величины.

Первое слагаемое в этой формуле имеет смысл относительной погрешности при х = хk, второе — характеризует рост относительной погрешности при уменьшении показаний прибора. Пределы допускаемой приведенной погрешности (в процентах) следует устанавливать по формуле

γ = 100∆ / xN = ± р

где xN – нормирующее значение; р - отвлеченное положительное число из ряда 1; 1,5; 2; 2,5; 4; 5; 6, умноженное на 10n (n = 1, 0, -1, -2 и т.д.)

Нормирующее значение принимается равным: конечному значению шкалы (если 0 находится на краю шкалы), сумме конечных значений шкалы (если 0 внутри шкалы), номинальному значению измеряемой величины, длине шкалы.

11.Погрешности измерений: понятие,классификация,причины возникновения способы обноружения и устранения. Погрешность измерения — оценка отклонения измеренного значения величины от её истинного значения. Погрешность измерения является характеристикой (мерой) точности измерения.

Абсолютная погрешность — ΔX является оценкой абсолютной ошибки измерения. Величина этой погрешности зависит от способа её вычисления, который, в свою очередь, определяется распределением случайной величины Xmeas. При этом неравенство: ΔX > | Xmeas − Xtrue |, где Xtrue — истинное значение, а Xmeas — измеренное значение, должно выполняться с некоторой вероятностью, близкой к 1. Если случайная величина Xmeas распределена по нормальному закону, то обычно за абсолютную погрешность принимают её среднеквадратичное отклонение. Абсолютная погрешность измеряется в тех же единицах измерения, что и сама величина.

Приведённая погрешность — погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона. Вычисляется по формуле \delta_x =\frac{ \Delta x}{X_n}, где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

 

· если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений;

· если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.

Приведённая погрешность является безразмерной величиной, либо измеряется в процентах.

Случайная погрешность — погрешность, меняющаяся (по величине и по знаку) от измерения к измерению. Случайные погрешности могут быть связаны с несовершенством приборов (трение в механических приборах и т. п.), тряской в городских условиях, с несовершенством объекта измерений (например, при измерении диаметра тонкой проволоки, которая может иметь не совсем круглое сечение в результате несовершенства процесса изготовления), с особенностями самой измеряемой величины (например при измерении количества элементарных частиц, проходящих в минуту через счётчик Гейгера).

Систематическая погрешность — погрешность, изменяющаяся во времени по определённому закону (частным случаем является постоянная погрешность, не изменяющаяся с течением времени). Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, калибровка и т. п.), неучтёнными экспериментатором.

Прогрессирующая (дрейфовая) погрешность — непредсказуемая погрешность, медленно меняющаяся во времени. Она представляет собой нестационарный случайный процесс.

Грубая погрешность (промах) — погрешность, возникшая вследствие недосмотра экспериментатора или неисправности аппаратуры (например, если экспериментатор неправильно прочёл номер деления на шкале прибора или если произошло замыкание в электрической цепи).





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 1680 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Бутерброд по-студенчески - кусок черного хлеба, а на него кусок белого. © Неизвестно
==> читать все изречения...

2414 - | 2334 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.