Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Измерения постоянных токов и напряжений




Из средств измерений постоянных токов и на­пряжений наименьшую погрешность измерений дают компенса­торы (потенциометры) постоянного тока. Например, компенсатор типа Р332 имеет класс точности 0,0005 и позволяет измерять постоянные ЭДС и напряжения в диапазоне от 10 нВ до 2,1211111 В. Постоянные токи измеряют с помощью компенсато­ров косвенно с использованием катушек электрического сопро­тивления. При использовании катушек электрического сопротив­ления типа Р324 класса точности 0,002 и компенсатора типа Р332 можно измерять токи с погрешностью не более ± 0,0025 %. Компенсаторы используют при точных измерениях постоянных токов, ЭДС и напряжений и для поверки менее точных средств измерении.

Наиболее распространенными средствами измерении посто­янных токов и напряжении являются амперметры (микро-, милли-, килоамперметры) и вольтметры (микро-, милли-, киловольт-метры), а также универсальные и комбинированные приборы (например, микровольтнаноамперметры, нановольтамперметры и т. п.).

Для измерения малых и средних значений постоянных токов и напряжений наибольшее распространение имеют цифровые и магнитоэлектрические приборы. Измерения больших постоян­ных токов осуществляют обычно магнитоэлектрическими килоамперметрами с использованием наружных шунтов, а очень больших токов – посредством трансформаторов постоянно­го тока. Для измерений больших постоянных напряжений исполь­зуют магнитоэлектрические и электростатические киловольтметры. Электродинамические амперметры и вольтметры редко используют для технических измерении токов и напряжении в це­пях постоянного тока. Их чаще применяют в качестве образцовых приборов при поверке средств измерений более низкого класса точности наряду с цифровыми и магнитоэлектрическими приборами высоких классов точности.

Измерения переменных токов и напряжений.

В основу изме­рений переменных токов и напряжений положены государствен­ный специальный эталон, воспроизводящий силу тока 0,01— 10 А в диапазоне частот 40—1 • 105 Гц, и госу­дарственный специальный эталон, воспроизводящий напряжение 0,1—10 В в диапазоне частот 20¸3×107 Гц.

Рабочими средствами измерений переменных токов и напря­жений являются амперметры (микро-, милли-, килоамперметры), вольтметры (микро-, милли-, киловольтметры), компенсаторы переменного тока, универсальные и комбинированные приборы, а также регистрирующие приборы и электронные осциллографы. При измерении переменных токов и напряжений могут измеряться их действующие, амплитудные, средние выпрямленные, средние и мгновенные значения. В практике электрических измерений чаще всего приходится измерять синусоидальные переменные токи и напряжения, которые характеризуются действую­щим значением. Поэтому подавляющее большинство средств измерений переменных токов и напряжений градуируются в дей­ствующих значениях для синусоидальной формы кривой тока или напряжения.

Малые переменные токи измеряют цифровыми, элек­тронными и выпрямительными приборами, малые переменные напряжения - электронными вольтметрами.

Переменные токи свыше килоампера и переменные напряже­ния свыше киловольта измеряют с помощью наружных измери­тельных трансформаторов тока или напряжения электромагнит­ными, выпрямительными и электродинамическими приборами. Измерения высоких переменных напряжений (до 75 кВ) при прямом включении средств измерений позволяют осуществлять электростатические киловольтметры, например киловольтметр типа С100..

В наиболее широком частотном диапазоне при измерении переменных токов работают термоэлектрические и электронные приборы, а при измерении переменных напряжений — электрон­ные и электростатические приборы. Термоэлектрические вольт­метры имеют ограниченное применение из-за большой мощно­сти, потребляемой ими из цепи измерения. В наиболее узком частотном диапазоне работают электродинамические и электромагнитные приборы. Верхняя граница их частотного диапазона обычно не превышает единиц килогерц. Связь меж­ду диапазоном измеряемых величин и частотным диапазоном для разных средств измерений разная. Однако можно указать общую закономерность: с увеличением значения измеряемой величины верхняя граница частотного диапазона снижается. При этом наблюдается и другая закономерность: с увеличением частоты погрешность измерений увеличива­ется.

При измерениях действующих значений переменных токов и напряжении, форма кривой которых отличается от синусоидальной, возникает дополнительная погрешность. Наиме­нее чувствительны к изменению формы кривой переменных токов и напряжений термоэлектрические, электростатические и элек­тронные приборы.

Наиболее точные измерения действующих значений синусои­дальных токов и напряжений можно осуществить электродинами­ческими приборами, цифровыми приборами и компенсаторами переменного тока. Однако погрешность измерений переменных токов и напряжений больше, чем постоянных.

Особенности измерений токов и напряже­ний в трехфазных цепях. В общем случае в несимметричных трехфазных цепях число необходимых средств измерений токов и напряжений соответствует числу измеряемых величин, если каждая измеряемая величина измеряется своим прибором. При измерениях в симметричных трехфазных цепях достаточно про­извести измерение тока или напряжения только в одной линии {фазе), так как в этом случае все линейные (фазные) токи и на­пряжения равны между собой. Связь между линейными и фазны­ми токами и напряжениями зависит от схемы включения нагруз­ки: В несимметричных трехфазных цепях при измерениях токов и напряжений с помощью измерительных трансформаторов можно сэкономить на количестве исполь­зуемых измерительных трансформаторов. Для примера на рис. приведена схема измерений трех линейных токов с ис­пользованием двух измерительных трансформаторов тока, а на рис. аналогичная схема измерений линейных напряжений. Эти схемы основаны на известных соотношениях для трехфазных цепей: IA+IB+IC=0, следовательно, -IC= IA+IB ; и UAB+UBC+UCA=0 следовательно, -UCA=UAB+UBC.. Следует иметь в виду, что для правильного суммирования токов необходимо следить за правильностью вклю­чения генераторных зажимов измерительных трансформаторов. Неправильное включение генераторных зажимов одного из транс­форматоров (в первичной или вторичной цепи) приведет к изме­нению фазы одного из суммируемых токов и результат получится неправильный.

Схема для измерений линейных напряжений рабо­тает аналогично. Подобные схемы могут быть использованы для измерения фазных токов и напряжений. Для измерений токов и напряжений в трехфазных цепях можно использовать средства измерений этих величин, предназначенные для однофазных це­пей. Кроме того, делаются специ­альные приборы для измерения в трехфазных цепях, которые позволяют быстро и удобно выполнить необходимые измерения.

Измерения средневыпрямленных и амплитудных зна­чений синусоидальных токов и напряжений трудностей не вызы­вают, так как эти значения однозначно связаны с действующим значением синусоиды. Для измерений средневыпрямленных токов и напряжений, форма кривой кото­рых отличается от синусоидальной, нужно использовать средства измерений с выходным сигналом, который определяется средневыпрямленным значением входной величины. К таким средствам относятся выпрямительные приборы и некоторые электронные и цифровые приборы. При градуировке этих средств в действую­щих значениях синусоиды измеряемое средневыпрямленное зна­чение находят делением показания приборов на коэффициент 1,11 Погрешность от изменения формы кривой токов и напряжений у этих приборов тем меньше, чем шире их частотный диапазон. Для измерений амплитудных значений токов и напряжений, фор­ма кривой которых отличается от синусоидальной, нужно использовать средства измерений, выходной сигнал которых определя­ется амплитудным значением входной величины. К таким средст­вам относятся некоторые электронные приборы. При градуировке этих приборов в действующих значениях синусоиды измеряемое амплитудное значение находят умножением показания приборов на коэффициент формы. Для измерений амплитуд импульсных токов и напряжений применяют импульсные электронные приборы.

Среднее значение переменного тока или напряжения характе­ризует постоянную составляющую, содержащуюся в измеряемом токе или напряжении. Для измерений средних значений перемен­ных токов и напряжений обычно применяют магнитоэлектриче­ские приборы.

Мгновенные значения переменных токов и напряжений изме­ряют регистрирующими приборами и электронными осциллографами.

Измерения мощности, энергии и количества электричества

Общие сведения. В настоящее время необходимо измерять мощность и энергию постоянного тока, активную мощность и энергию однофазного и трехфазного переменного тока, реактив­ную мощность и энергию трехфазного переменного тока, мгновен­ное значение мощности, а также количество электричества в очень широких пределах. Требуемая точность измерения мощности постоянного и перемен­ного тока различна для разных частотных диапазонов. Для постоянного и переменного однофазного и трехфазного тока про­мышленной частоты погрешность должна находиться в пределах: (0,01—0,1) %; при сверхвысоких частотах погрешность может быть выше ± (1—5 %).

Измерение реактивной мощности имеет практическое значе­ние лишь у крупных потребителей электроэнергии, которые всег­да питаются трехфазным переменным током. Нижний предел измерения реактивной мощности трехфазного переменного тока находится на уровне нескольких вар, а верхний предел примерно 106 вар. Погрешность измерения реактивной мощности должна находиться в пределах ± (0,1-0,5) %.

Диапазон измерения электрической энергии определяется диапазонами изменения номинальных (максимальных) токов и напряжений. Для энергии, потребляемой различными электро­техническими устройствами, нижний предел диапазона измере­ния тока равен примерно 10-9 А, а напряжения — 10-6 В. Одна­ко средств измерений для непосредственного измерения таких малых энергий не существует, а малые значения энергии опреде­ляются косвенными методами (например, определяется мощ­ность и время). Верхний предел диапазона измерения тока дости­гает 104 А, а напряжение — 106 В. Допускаемая погрешность измерения энергии должна находиться в пределах ± (0,1— 2,5) %.

Измерение реактивной энергии необходимо только для про­мышленных трехфазных цепей. Поэтому нижний предел диапазо­на измерения тока в этом случае находится на уровне 1 А, а на­пряжения - 100 В. Верхний предел диапазона измерения тока при непосредственном измерении энергии равен 50 А и напряже­ния - 380 В. Допускаемая погрешность измерения реактивной энергии должна находиться на уровне ± (1—2,5) %.

В широких пределах необходимо также измерять количества электричества: от измерения количества электри­чества в кратковременных импульсах тока (единицы милликулон) до измерения количества электричества, протекающего в те­чение длительного времени (до 1011 Кл). Допускаемая погреш­ность измерения количества электричества должна находиться в пределах ± (0,1—5) %.

Измерение мощности и энергии постоянного и переменного однофазного тока. Для измерения мощности в цепях постоянного и переменного однофазного тока применяют электродинамиче­ские и ферродинамические ваттметры, принцип действия и схемы включения которых рассмотрены ранее.

Для точных измерений мощности постоянного и переменного тока на частоте (до 5000 Гц) вы­пускают электродинамические ваттметры в виде переносных приборов классов точности 0,1-0,5.

Для измерений мощности в производственных условиях в це­пях переменного тока промышленной или более высоких фиксиро­ванных частот (400, 500 Гц) применяют щитовые ферродина­мические ваттметры классов точности 1,5—-2,5.

Для измерений мощности на высоких частотах применяют термоэлектрические и электронные ваттметры.

Для измерений мощности при больших токах и напряжениях ваттметры обычно включают через измерительные трансформа­торы тока и напряжения.

Находят применение также косвенные методы измерения мощности постоянного и однофазного переменного тока. Мощ­ность постоянного тока можно определить с помощью двух прибо­ров: амперметра и вольтметра, а мощность однофазного перемен­ного тока - с помощью трех приборов: амперметра, вольтметра и фазометра. При различных схемах включения приборов значения методических погрешностей измерения мощности оказываются различными, зависящими от соотношений сопротивлений приборов и нагрузки. При косвенном измерении мощности необходимо производить одновременный отсчет по двум или трем приборам. Кроме того, при этом снижает­ся точность измерения за счет суммирования инструментальных погрешностей приборов. Например, прямые измерения мощности однофазного переменного тока могут быть проведены с наимень­шей погрешностью ±0,1 %, в то время как при косвенных измерениях мощности измерение только коэффици­ента мощности возможно с наименьшей погрешностью ±0,5 %, а следовательно, общая погрешность будет превышать ±0,5 %.

Для измерения мощности переменного тока иногда применя­ют электронный осциллограф, в частности для определения мощ­ности потерь на гистерезис в ферромагнитных материалах. При этом площадь гистерезисной петли оказывается пропорциональ­ной мощности потерь.

Измерение энергии постоянного тока осуществляют с по­мощью счетчиков постоянного тока.

Энергию однофазного переменного тока измеряют индукци­онными счетчиками электрической энергии.

Электрическую энергию можно измерять также с помощью электронных счетчиков электрической энергии, не имеющих по­движных частей. Такие счетчики обладают лучшими метроло­гическими характеристиками и большей надежностью и являются перспективными средствами измерений электрической энергии.





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 690 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Человек, которым вам суждено стать – это только тот человек, которым вы сами решите стать. © Ральф Уолдо Эмерсон
==> читать все изречения...

2253 - | 2095 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.