Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Измерительных сигналов. К элементарным измерительным сигналам относятся постоянный во времени сигнал и сигналы, описываемые единичной и синусоидальной функциями




 

К элементарным измерительным сигналам относятся постоянный во времени сигнал и сигналы, описываемые единичной и синусоидальной функциями, а также дельта-функцией.

Постоянный сигнал — самый простой из элементарных сигналов, описываемый математической моделью вида Y = А, где А — единственный параметр сигнала. Графики временной и частотной моделей постоянного сигнала приведены на рис. 10.4.

Рис. 10.4. Графики временной (а) и частотной (б) моделей

постоянного сигнала

Единичная функция, называемая иногда функцией Хевисайда, описывается уравнением

Она имеет один параметр — момент времени t0. Ее временная и частотная модели представлены на рис. 10.5,а.

Дельта-функция описывается уравнением

Она также имеет один параметр — момент времени t0. Графики временной и частотной моделей дельта-функции d(t) показаны на рис. 10.5, б. Из них видно, что дельта-функция имеет спектр бесконечной ширины.

Рис. 10.5. График моделей единичной (а) и дельта-функции(б)

 

Дельта-функция обладает следующим свойством:

где e — любое, сколь угодно малое число. Она может рассматриваться как предельная функция однопараметрического семейства непрерывных функций, например нормального распределения с бесконечно малым СКО s:

Единичная и дельта-функции связаны между собой следующими выражениями:

Важной особенностью дельта-функции является стробирующее действие, которое описывается уравнением

Оно используется для представления дискретизированной во времени функции с шагом дискретизации Dt:

Гармонический сигнал описывается уравнением

(10.5)

Параметрами такого сигнала являются: амплитуда Ym, период Т (или частота f=l/T, или круговая частота w) и начальная фаза j. График временной модели общеизвестен, а график частотной модели такого сигнала показан на рис. 10.6

 

.

Рис. 10.6. Спектр гармонического сигнала

 





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 574 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2239 - | 2158 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.