Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы и способы измерений




 

Прямое (непосредственное) измерение – измерение, при котором искомое значение величины находят непосредственно из опытных данных, например, по показаниям СИ (измерения при помощи измерительной линейки, штангенциркуля, микрометра и др.)

Уравнение прямого измерения с отсчетом по шкале:

Аи пр. = С * у,

где Аи пр. – значение измеренной (искомой) величины А в принятых единицах измерения (результат измерения), С – цена деления шкалы или единичного показания цифрового отсчетного устройства, у – отсчет (количество делений шкалы или количество единичных показаний).

Шкала может состоять из двух подшкал. Например, основная шкала на стебле (гильзе) гладкого микрометра. В этом случае результат измерения определяют по сумме показаний подшкал: по нижней определяют количество целых миллиметров, по верхней – 0,5 мм. Если СИ имеет еще и нониус, то отсчет получают суммированием показаний всех шкал.

Например, у гладкого микрометра шкала нониуса нанесена на скосе барабана. По ней отсчитывают дополнительно десятые и сотые доли миллиметра.

Косвенное (непрямое) измерение – измерение, при котором искомое значение величины находят расчетом на основе известной зависимости между искомой величиной и величинами, полученными прямыми измерениями. Такие измерения выполняют, когда искомую величину невозможно непосредственно измерить вообще или когда нет подходящего СИ для прямого измерения. Например, такие измерения выполняют: при измерении штангенрейсмасом двух размеров, чтобы определить третий размер; при измерении вала Ø5 м (измеряют рулеткой длину окружности и вычисляют диаметр вала по формуле d = L/π); при измерении угла по двум катетам или по катету и гипотенузе и т.д.

Уравнение косвенного измерения: Аи кос. = f(a1,a2,…,an), где

Аи кос . – измеренная (искомая) величина А в принятых единицах (результат измерения), a1,a2,…,an – результаты прямых измерений (a1 = С1 * у1, a2 = С2 * у2, aп = Сп * уп).

Совокупное измерение – измерение, при котором одновременно измеряют несколько однородных (одноименных) величин, а значение искомой величины находят решением системы уравнений, составленных по результатам прямых измерений различных сочетаний этих величин. Количество уравнений должно быть не менее количества сочетаемых величин. Например, нужно определить величины А, В и С, но нет средства, которым можно было их измерить прямым измерением, а есть возможность определить суммы любых двух из этих величин.

Тогда, измеряя сочетания величин, получим уравнения:

A + B = a, A + C = b, B + C = c,

Где a, b, c – результаты измерений соответствующих пар. Искомые однородные величины A, B, C определяются решением этих уравнений (т.е. получается система из трех уравнений с тремя неизвестными). Такая задача возникает, например, при калибровке магазина (набора) мер, когда значения мер определяют по известному значению одной из них и прямым сопоставлением размеров различных сочетаний мер.

Рассмотрим решение подобной задачи в общем виде:

Дано: a = A + B, b = A + C, c = B + C.

Нужно определить: A, B, C.

Решение:

A = a – B, b = a – B + C, c = B + C, B = c – C,

b = a – c + C + C, b – a + c =2C, отсюда:

C = (b – a + c)/2, B = c - (b – a + c)/2 = (2c – b + a - c)/2 = c – b + a/2,

A = a - (c b + a)/2 = (2a – c + b - а)/2 = (a – c + b)/2.


Совместное измерение – измерение, при котором по результатам одновременных прямых или косвенных измерений неоднородных (разноименных) величин определяют зависимости между ними. Например, при одновременном измерении приращения длины образца и температуры для определения коэффициента линейного расширения (K=∆l / l * ∆t).

По выражению результата измерения: абсолютные и относительные.

Абсолютное измерение – прямое измерение, приводящее к значению измеренной величины, выраженному в ее единицах (или основанное на использовании физических констант). Например, когда искомая величина определяется непосредственно по показаниям СИ (измерение микрометром, штангенциркулем и др.).

Относительное измерение - измерение, при котором определяют отношение искомой величины к однородной величине, играющей роль единицы, или определяют отношение к однородной величине принятой за исходную. Например, когда определяют искомый размер или искомое отклонение по отношению к установочной мере или образцу, по которым СИ устанавливают на нуль или на размер. В этом случае искомый размер определяют алгебраическим сложением (суммированием) размера установочной меры (номинального ее размера или размера по справке к свидетельству о калибре) и показания СИ. Этот метод, как правило, оказывается более точным и, при измерении больших партий объектов, - более производительным. Например, при измерении индикаторным нутромером, установленным на размер с помощью концевых мер длины.

При единичных измерениях он малопроизводителен, т.к. каждый раз требует настройки СИ на нуль или на размер.

По числу измерений и роду измерений: однократное измерение – измерение, выполняемое один раз в одном месте.

Многократные измерения – измерения, выполняемые несколько раз в одном месте (т.е. несколько однократных измерений).

По характеристике точности измерения подразделяют на равноточные и неравноточные. Равноточные измерения – ряд измерений величины, выполненных одинаковыми по точности, но разными СИ в одинаковых условиях (перед обработкой ряда измерений, следует убедиться, что измерения являются равноточными). Неравноточные измерения – ряд измерений величины, выполненных разными по точности СИ и (или) в разных условиях.

Статические измерения – измерения, при неизменных условиях в течение времени измерения.

Динамические измерения, когда измеряют величину, которая в процессе измерения изменяет свой размер. Например, при измерении нагревающейся или остывающей детали (например, для определения коэффициента линейного расширения).

Прямые измерения могут осуществляться способами непосредственной оценки и сравнения с мерой.

Способ непосредственной оценки – измерение, при котором значение измеряемой величины определяют непосредственно по отсчетному устройству средства измерения (по шкале, по цифровому табло).

Способ сравнения с мерой - измерение, при котором измеряемую величину сравнивают с величиной воспроизводимой мерой (например, сравнение с блоком концевых мер длины).

Способ сравнения с мерой, в свою очередь, подразделяют на нулевой, разностный, совпадений, замещения и противопоставления.

Нулевой способ (компенсационный)- измерение, при котором результирующий эффект воздействия измеряемой величины и меры на прибор сводится к нулю (выравнивается). Например, при взвешивании на весах, при измерении электрического сопротивления уравновешенным мостом. Этот способ более точен, чем метод непосредственной оценки.

Разностный способ (дифференциальный) - измерение, при котором измеряют разность между значениями измеряемой величины и величины, воспроизводимой мерой. После чего измеряемая величина находится путем алгебраического сложения. Например, при измерении размера отверстия при помощи индикаторного нутромера, установленного на размер блока концевых мер. Этот способ часто применяют при поверке (калибровке) СИ. Например, измерение путем сравнения с эталонной мерой на компараторе (приборе сравнения) при поверке рабочих плоскопараллельных концевых мер длины.

Способ совпадений (нониусный) - измерение, при котором измеряют разность между измеряемой величиной и величиной, воспроизводимой мерой, измеряют по совпадению отметок шкал или периодических сигналов. Например, по совпадению отметок шкал основной и нониуса при измерении штангенциркулем или по совпадению показания часов с радиосигналом точного времени.

Способ замещения - измерение, при котором измеряемую величину замещают известной величиной, воспроизводимой мерой. Например, при взвешивании с поочередным помещением измеряемой массы и гирь на одну и ту же чашу весов. Скажем, есть гиря 1 кг. Нужно взвесить 2 кг. Взвешивают 1 кг продукта, затем на одну чашу весов кладут гирю и вывеску продукта, а на вторую чашу взвешиваемый продукт.

Способ противопоставления - измерение, при котором измеряемая величина и величина воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами. Например, измерение массы на равноплечих весах с помещением измеряемой массы и уравновешивающих ее гирь на двух чашах весов. Скажем, есть гири 1 кг и две по 3 кг. Нужно взвесить 5 кг. На одну чашу кладут гири 3+3 кг, на на другую гирю 1 кг и взвешиваемую массу.

Необходимо помнить, что при разных методах измерения одной величины точность измерения будет разной. Например, высоту телебашни можно измерять: рулеткой (метод сравнения с мерой), высотометром вертолета (метод непосредственной оценки), измеряя горизонтальное расстояние до башни и вертикальный угол, образованный основанием и вершиной башни (метод косвенного измерения).

В зависимости от измерительных средств, используемых в процессе измерения, различают инструментальный, экспертный, эвристический и органилептический методы измерений.

Инструментальны метод основан на использовании специальных технических средств, в том числе автоматизированных и автоматических.

Экспертный метод оценки основан на использовании данных нескольких специалистов.

Эвристические методы оценки основаны на интуиции: способ попарного сравнения.

Органилептические методы оценки основаны на использовании органов чувств человека (осязания, обоняния, зрения, слуха и вкуса).

 

 





Поделиться с друзьями:


Дата добавления: 2015-05-08; Мы поможем в написании ваших работ!; просмотров: 3554 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент может не знать в двух случаях: не знал, или забыл. © Неизвестно
==> читать все изречения...

2754 - | 2314 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.