Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Методы культивирования, индикации и идентификация вирусов




1. Представителей царства вирусов характеризует все, кроме:

  1. отсутствие роста и бинарного деления
  2. один тип нуклеиновой кислоты
  3. способность репродуцироваться из одной нуклеиновой кислоты
  4. абсолютный паразитизм

2. Царство вирусов включает вирусоподобные структуры, кроме:

  1. плазмиды (эписомы, эпивирусы)
  2. дефектные (интерферирующие)
  3. вироиды
  4. прионы
  5. хромосомы

3. Плазмиды как вирусоподобные структуры представляют собой:

  1. двунитчатые кольцевые ДНК, реплицируемые клеткой
  2. свободную инфекционную нуклеиновую кислоту, устойчивую к действию высокой температуры и УФ облучению
  3. вирус, содержащий вместо вирусной нуклеиновой кислоты нуклеиновую кислоту клетки- хозяина
  4. вирусоподобную белковую или полисахаридную структуру, устойчивую к действию высокой температуры, УФ облучению, радиации и нуклеаз

4. Вироиды как вирусоподобные структуры представляют собой:

  1. двунитчатые кольцевые ДНК, реплицируемые клеткой
  2. свободную инфекционную нуклеиновую кислоту, устойчивую к действию высокой температуры и УФ облучения
  3. вирус, содержащий вместо вирусной нуклеиновой кислоты нуклеиновую кислоту клетки - хозяина
  4. вирусоподобную белковую или полисахаридную структуру, устойчивую к действию высокой температуры и УФ облучения, радиации, нуклеаз

5. Прионы, как вирусоподобные структуры представляют собой:

  1. двунитчатые кольцевые ДНК, реплицируемые клеткой
  2. свободную инфекционную нуклеиновую кислоту, устойчивую к действию высокой температуры и УФ облучения
  3. вирус, содержащий вместо вирусной нуклеиновой кислоты нуклеиновую кислоту клетки - хозяина
  4. вирусоподобную белковую или полисахаридную структуру, устойчивую к действию высокой температуры и УФ облучения, радиации, нуклеаз

6. Необычные вирусы (вирусоподобные структуры) - вироиды и прионы могут вызывать, кроме:

  1. медленные вирусные инфекции
  2. болезнь Крейцфельда - Якоба
  3. скрепи (губкообразные спонгиоформные энцефалопатии животных и человека)
  4. ПСПЭ (подострый склерозирующий панэнцефалит)

 

 

7. Дефектные вирусы (дефектные интерферирующие частицы - ДИ частицы) представляют собой:

  1. двунитчатые кольцевые ДНК, реплицируемые клеткой
  2. свободную инфекционную нуклеиновую кислоту, устойчивую к действию высокой температуры и УФ облучения
  3. вирус, содержащий вместо вирусной нуклеиновой кислоты нуклеиновую кислоту клетки- хозяина
  4. вирусоподобную белковую или полисахаридную структуру, устойчивую к действию высокой температуры и УФ облучения, радиации, нуклеаз

8. Размеры вирионов варьируют:

  1. от 15-18 нм до 300-400 нм
  2. от 0,2 мкм до 1,5 мкм
  3. от 0,2 мкм до 150 мкм

9. Самые крупные вирусы (300-400 нм):

  1. вирусы группы оспы (поксвирусы)
  2. вирусы полиомиелита
  3. Коксаки, ЭКХО
  4. гепатита А
  5. риновирусы (пикорнавирусы)

10. Самые мелкие вирусы (8-30 нм):

  1. вирусы группы оспы (поксвирусы)
  2. вирусы полиомиелита, Коксаки, ЭКХО, гепатита А, риновирусы (пикорнавирусы)
  3. вирус гриппа, парагриппа

11. В структуру простого вируса входит:

  1. ДНК или РНК
  2. капсид, состоящий из капсомеров
  3. внешняя оболочка (наружная оболочка, суперкапсид, пеплос)

12. В структуру сложного вириона входит:

  1. ДНК или РНК
  2. капсид, состоящий из капсомеров
  3. внешняя оболочка (наружная оболочка, суперкапсид, пеплос)
  4. капсула

13. К простым вирусам относятся:

  1. вирусы полиомиелита, Коксаки, ЭКХО
  2. гепатита А
  3. гепатита В
  4. вирусы гриппа, парагриппа, RS, кори
  5. аденовирус

14. К сложным вирусам относятся:

  1. вирусы полиомиелита, Коксаки, ЭКХО
  2. гепатита А
  3. гепатита В
  4. вирусы гриппа, парагриппа, RS, кори
  5. аденовирус
  6. вирусы группы оспы, герпеса

 

15. Структура капсида вириона может иметь типы симметрии:

  1. спиральный
  2. нитевидный
  3. кубический
  4. двойной (бинарный, смешанный)

16. Тип симметрии вируса – это:

  1. форма вируса
  2. расположение белковых субъединиц капсида (капсомеров) вокруг нити нуклеиновой кислоты
  3. чередование нуклеотидов в НК вируса

17. Спиральный (винтовой, геликоидальный) тип симметрии капсида вириона – это:

  1. расположение капсомеров вокруг НК в виде многогранника
  2. когда капсомеры следуют за витками нуклеиновой кислоты
  3. расположение капсомеров в одной части вириона в виде многогранника, в другой - в виде спирали

 

18. Кубический (изометрический, кубоидальный, квазисферический) тип симметрии - это:

  1. расположение капсомеров вокруг НК в виде многогранника
  2. когда капсомеры следуют за витками нуклеиновой кислоты
  3. расположение капсомеров в одной части вириона в виде многогранника, в другой - в виде спирали

19. Двойной (смешанный, бинарный) тип симметрии - это:

  1. расположение капсомеров вокруг НК в виде многогранника
  2. когда капсомеры следуют за витками нуклеиновой кислоты
  3. расположение капсомеров в одной части вириона в виде многогранника, в другой - в виде спирали

20. Спиральный тип симметрии капсида имеют:

  1. аденовирус
  2. вирус гриппа
  3. вирус полиомиелита, Коксаки, ЭКХО
  4. бактериофаг (вирус бактерий)

21. Кубический тип симметрии капсида имеют:

  1. аденовирус
  2. вирус гриппа
  3. вирус полиомиелита, Коксаки, ЭКХО
  4. бактериофаг (вирус бактерий)

22. Смешанный тип симметрии имеют:

  1. аденовирус
  2. вирус гриппа
  3. вирус полиомиелита, Коксаки, ЭКХО
  4. бактериофаг (вирус бактерий)

23. Особенность химического состава вирусов:

  1. наличие ферментов гликолитического пути расщепления глюкозы
  2. наличие одного типа нуклеиновой кислоты (ДНК или РНК)

24. В состав вирусов могут входить следующие нуклеиновые кислоты, кроме:

  1. однонитевые РНК, ДНК
  2. двунитевые РНК, ДНК
  3. линейные РНК, ДНК
  4. кольцевые РНК, ДНК
  5. фрагментированные РНК
  6. денатурированная ДНК

25. РНК содержат:

  1. вирусы гриппа, парагриппа, кори,RS
  2. вирус гепатита А
  3. вирус гепатита В
  4. вирусы полиомиелита, Коксаки, ЭКХО
  5. аденовирусы
  6. вирус оспы, герпеса, цитомегалии
  7. ВИЧ

26. ДНК содержат:

  1. вирусы гриппа, парагриппа, кори, RS
  2. вирус гепатита А
  3. вирус гепатита В
  4. вирусы полиомиелита, Коксаки, ЭКХО
  5. аденовирусы
  6. вирус оспы, герпеса, цитомегалии
  7. ВИЧ

 

 

27. Позитивный РНК- геном (РНК+) вируса:

  1. представлен одиночными цепочками и упаковывается в капсид с образованием дочерней популяции
  2. не способен транслировать генетическую информацию
  3. является информационной РНК (передает информацию на рибосомы)

28. Негативный РНК- геном (минус РНК) вируса:

  1. представлен одиночными цепочками и упаковывается в капсид с образованием дочерней популяции
  2. не является информационной РНК
  3. является матрицей для синтеза мРНК

29. РНК+ (позитивный РНК - геном) содержат:

  1. ортомиксовирусы
  2. пикорнавирусы
  3. парамиксовирусы
  4. тогавирусы

30. Негативный РНК- геном содержат:

  1. парамиксовирусы
  2. рабдовирусы
  3. пикорнавирусы
  4. тогавирусы

31. Различают белки вирусов, кроме:

  1. структурные
  2. неструктурные
  3. капсидные
  4. белок А клеточной стенки
  5. суперкапсидные

32. Структурные капсидные и суперкапсидные вирусные белки выполняют ряд функций, кроме:

  1. защищают вирусный геном от неблагоприятных внешних воздействий
  2. ответственны за узнавание (“адресную“ функцию) и адсорбцию на специфических рецепторах клетки
  3. участвуют в слиянии с клеточной мембраной и обеспечивают проникновение вириона в клетку
  4. обеспечивают рост вируса
  5. образуют “внутренние” рибо- и дезоксирибонуклеопротеиды, обладающие антигенными свойствами
  6. входят в состав гликопротеидов внешней оболочки с антигенными свойствами

33. Ферменты вирусов:

  1. участвуют в метаболических реакциях с образованием АТФ
  2. участвуют в репликации и транскрипции вирусных геномов
  3. участвуют в проникновении вирусной нуклеиновой кислоты в клетку хозяина и выходе образовавшихся вирионов

34. Вирионные ферменты- это:

  1. ферменты, структура которых закодирована в вирусном геноме
  2. ферменты, входящие в вирион и обнаруженные у многих вирусов
  3. клеточные ферменты, активность которых модифицируются в процессе репродукции вируса

35. Вирусиндуцированные ферменты- это:

  1. ферменты, структура которых закодирована в вирусном геноме
  2. ферменты, входящие в вирион и обнаруженные у многих вирусов
  3. клеточные ферменты, активность которых модифицируются в процессе репродукции вируса

36. Углеводы и липиды вирусов:

  1. входят в состав капсидной оболочки
  2. входят во внешнюю оболочку
  3. ассоциированы с НК

 

37. В основу классификации вирусов положены следующие свойства, кроме:

  1. тип нуклеиновой кислоты
  2. молекулярно-биологические признаки нуклеиновых кислот: молекулярная масса, количество нитей, сегментарность и др.
  3. наличие внешней оболочки
  4. диаметр нуклеокапсида
  5. количество капсомеров
  6. антигены, резистентность к детергентам
  7. наличие или отсутствие пептидогликана и диаминопимелиновой кислоты в оболочке
  8. сегментарность и полярность НК

38. Вирусы, вызывающие инфекции с преимущественным поражением кишечника:

  1. энтеровирусы (вирус полиомиелита, Коксаки, ЭКХО)
  2. ротавирусы
  3. вирус гепатита А

39. Вирусы, вызывающие преимущественно нейроинфекции – это все, кроме:

  1. энтеровирусы
  2. вирус бешенства
  3. вирус клещевого энцефалита
  4. ВИЧ

40. Вирусы, передающиеся половым путем – это все, кроме:

  1. ВИЧ
  2. вирус простого герпеса 2 (ВПГ-2)
  3. арбовирусы

41. Группа арбовирусов объединяет вирусы:

  1. передающиеся членистоногими
  2. размножающиеся в организме членистоногих
  3. передающиеся половым путем

42. Взаимодействие вируса с клеткой и процесс репродукции включает стадии, кроме:

  1. адсорбции
  2. хемотаксиса
  3. транскрипции, трансляции информационных РНК и репликации вирусных геномов
  4. сборки вириона
  5. выхода вирусных частиц из клетки
  6. проникновения вируса в клетку
  7. “раздевания” вирионов

43. Проникновение вируса в клетку хозяина происходит различными путями, кроме:

  1. виропексиса
  2. слияния мембран
  3. эндоцитоза
  4. фагоцитоза

44. Взаимодействие вируса с клеткой на стадии выхода из клетки:

  1. сопровождается деструкцией (лизисом) клетки и выходом вируса во внеклеточное пространство
  2. осуществляется путем почкования
  3. осуществляется путем слияния вирусных и клеточных мембран

45. Вирусы возможно культивировать:

  1. в куриных эмбрионах
  2. в культурах клеток
  3. в синтетической питательной среде 199
  4. в организме лабораторных животных

46. Индикацию вирусов в культуре клеток проводят с помощью различных методик, кроме:

  1. реакции гемадсорбции
  2. РИФ
  3. выявления ЦПД вируса
  4. обнаружения включений в клетках
  5. обнаружения бляшек на ХАО (хорионаллантоисная оболочка)
  6. ИФА, РИА
  7. бляшкообразования на клеточном монослое под агаровым покрытием (по Дальбекко)

47. Перевиваемыми культурами клеток называют:

  1. диплоидные клетки человека, сохраняющие в процессе 50 пассажей (до года) диплоидный набор хромосом
  2. культуры клеток адаптированные к условиям, обеспечивающим им постоянное существование in vitro и сохраняющиеся на протяжении нескольких десятков пассажей (теоретически неограниченное количество пассажей)
  3. культуры клеток, способные выдерживать небольшое (2-3) количество пассажей in vitro

 

 

48. Полуперевиваемыми культурами клеток называют:

  1. диплоидные клетки человека, сохраняющие в процессе 50 пассажей (до года) диплоидный набор хромосом
  2. культуры клеток адаптированные к условиям, обеспечивающим им постоянное существование in vitro и сохраняющиеся на протяжении нескольких десятков пассажей (теоретически неограниченное количество пассажей)
  3. культуры клеток, способные выдерживать небольшое (2-3) количество пассажей in vitro

49. Первичными культурами клеток называют:

  1. диплоидные клетки человека, сохраняющие в процессе 50 пассажей (до года) диплоидный набор хромосом
  2. культуры клеток адаптированные к условиям, обеспечивающим им постоянное существование in vitro и сохраняющиеся на протяжении нескольких десятков пассажей (теоретически неограниченное количество пассажей)
  3. культуры клеток, способные выдерживать небольшое (2-3) количество пассажей in vitro

50. Первичные культуры клеток – это:

  1. HeLa
  2. Hep-2
  3. клетки почек обезьян
  4. фибробласты эмбриона человека (ФЭЧ)

51. Перевиваемые линии культур клеток – это:

  1. HeLa
  2. Hep-2
  3. клетки почек обезьян
  4. фибробласты эмбриона человека (ФЭЧ)

52. Питательные среды, используемые для выращивания культур клеток:

  1. Среда 199
  2. Среда Игла
  3. раствор Хенкса
  4. раствор Эрла
  5. питательный бульон

53. Вирусная инфекция на клеточном уровне может быть:

  1. продуктивной цитолитической с образованием инфекционного потомства - лизисом клетки и выходом вирионов во внеклеточную среду
  2. продуктивной нецитолитической с образованием инфекционных вирусных частиц без лизиса клетки, которая продолжает функционировать
  3. интегративной (интеграционной вирогенией, интрагеномным носительством) интеграции вирусной ДНК или РНК с клеточным геномом
  4. абортивной, при заражении клеток дефектным вирусом, в результате чего инфекционные вирусные частицы не образуются или образуются в меньшем количестве
  5. генерализованной

54. Возможные последствия инфекционного процесса, вызванного вирусами для клетки – это все, кроме:

  1. сохранение жизнеспособности клетки
  2. деструкция клетки, возникающая при цитолитической инфекции (цитопатогенное действие вируса - ЦПД)
  3. образование вирусных внутриклеточных включений
  4. образование многоядерных клеток в результате их слияния (симпластообразование)
  5. образование в клетке ретикулярных (инициальных) телец
  6. онкогенная трансформация клетки при интеграции вирусного генома с геномом клетки (вирогении, интегративной инфекции)

55. Особенности неспецифической противовирусной защиты организма в отличие от антибактериальной заключаются в участии различных факторов, кроме:

  1. интерферона
  2. термолабильных противовирусных ингибиторов
  3. фагоцитоза
  4. естественных клеток- киллеров (ЕКК)

56. Особенности иммунитета при вирусных инфекциях заключаются:

  1. в существенном участии секреторных антител класса А, обеспечивающих местный иммунитет во входных воротах инфекции
  2. в более важной роли клеточного иммунитета с участием Т- лимфоцитов и макрофагов
  3. в участии фагоцитоза и опсонинов
  4. в способности паразита вызывать иммунодефицитные состояния, ”ускользать” от иммунологического надзора особой локализацией в организме, что приводит к его персистенции, несмотря на наличие антител

57. Уровень секреторного иммуноглобулина А в фекалиях и смывах из носа у детей первого года жизни:

  1. отсутствует (следы)
  2. низкий
  3. высокий

58. Способность к образованию интерферона у детей раннего возраста:

  1. высокая
  2. снижена
  3. такая же, как у взрослых

 

59. Трансплацентарно к плоду переходят иммуноглобулины матери класса:

  1. А
  2. М
  3. G

60. В женском молоке наиболее высокая концентрация иммуноглобулинов класса:

  1. G
  2. М
  3. А
  4. Д
  5. Е

61. Интерферон- это:

  1. лизосомальный фермент
  2. гормон
  3. белок клетки, образующийся при взаимодействии с интерфероногеном (вирусом и др.) и защищающий клетки от вируса
  4. белок, образующийся плазмоцитами в ответ на действие антигена
  5. лимфокин, усиливающий хемотаксис нейтрофилов

62. Интерферон защищает клетку от вирусной инфекции путем:

  1. нейтрализациии вируса
  2. опосредованно прерывая информацию от генома вируса на рибосомы
  3. активируя вируснейтрализующее действие антител

63. Различают следующие классы интерферонов, кроме:

  1. a - интерферон
  2. b -интерферон
  3. g - интерферон
  4. эндогенный интерферон

 

64. Для лабораторной диагностики вирусных инфекций используют все методы, кроме:

  1. вирусоскопию (обнаружение элементарных телец, внутриклеточных включений, РИФ, ИЭМ)
  2. вирусологический метод (выделение, культивирование вирусов в курином эмбрионе, в культуре клеток, заражением лабораторных животных)
  3. серологический метод
  4. реакцию Видаля, Райта
  5. выявление вирусных антигенов с помощью высокочувствительных реакций (ИФА, РИА, РПГА, ВИЭФ, РП)
  6. нуклеиновые зонды, ПЦР

65. Для проведения вирусоскопического метода диагностики требуется:

  1. 1-2 часа
  2. 1-2 суток
  3. 3-5 суток до 1 месяца
  4. 2-3 недели

66. Цитопатогенное действие (ЦПД) вируса в культуре клеток можно выявить микроскопией в сроки:

  1. 1-2 часа после заражения
  2. 3-5 суток после заражения и до 1 месяца
  3. 24-48 часов после заражения

67. Для проведения диагностики вирусных инфекций с помощью нуклеиновых зондов, ПЦР требуется:

  1. 1-2 часа
  2. 24-48 часов
  3. 3 - 5 суток и до 1 месяца
  4. 2- 3 недели

68. Для проведения вирусологического метода диагностики требуется:

  1. 1-2 часа
  2. 24-48 часов
  3. 3 - 5 суток и до 1 месяца

69. Экспресс- методом диагностики вирусных инфекций является:

  1. вирусологический метод
  2. вирусоскопия (реакция иммунофлюоресценции - РИФ, иммунная электронная микроскопия - ИЭМ, обнаружение элементарных телец, включений)
  3. серологический метод с парными сыворотками больного
  4. нуклеиновые зонды, ПЦР

70. Экспресс-методами индикации вирусов в материалах от больных, в объектах окружающей среды, для которых требуется не более 2- х часов можно считать

а) иммунную электронную микроскопию (ИЭМ)

б) реакцию иммунофлюоресценции (РИФ)

в) РПГА (РНГА)

г) ИФА, РИА

д) нуклеиновые зонды, ПЦР

е) ЦПД вирусов, выращенных в культуре клеток

ж) РП, ВИЭФ

з) вирусоскопию (обнаружение элементарных телец, внутриклеточных включений)

 

71. Ретроспективным методом диагностики вирусных инфекций является:

  1. вирусоскопия
  2. серологический метод с парными сыворотками больного, взятых в период заболевания и период реконвалесценции
  3. серологический метод с целью обнаружения Ig M
  4. метод нуклеиновых зондов, ПЦР
  5. выявление антигенов с помощью высокочувствительных реакций ИФА, РИА, РПГА, РП, ВИЭФ

72. Для проведения серологического метода диагностики вирусных инфекций с парными сыворотками больного требуется интервал между взятием 1-й и 2-й проб:

  1. 1-2 часа
  2. 24-48 часов
  3. 3-5 суток до 1 месяца
  4. 2-3 недели

73. Для диагностики латентных, хронических персистентных форм вирусных инфекций используют все методы, кроме:

  1. метод нуклеиновых зондов, ПЦР
  2. вирусологический метод
  3. выявление антигенов с помощью высокочувстительных реакций ИФА, РИА
  4. выявление специфических Ig M

74. Идентификацию (определение вида и типа вируса) проводят с помощью различных реакций, кроме:

  1. реакции агглютинации
  2. реакции преципитации, ВИЭФ
  3. РТГА, РСК
  4. реакции торможения гемадсорбции
  5. реакции нейтрализации (РН) в культуре, на животных
  6. реакции иммунофлюоресценции (РИФ)
  7. ИФА, РИА, иммуноблотинга, латексного теста, выявления нуклеиновых кислот

в энзимогибридизационном тесте, ПЦР

  1. РНГА (РПГА), РНАт, РТНГА




Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 1034 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

2565 - | 2213 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.014 с.