Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Решение систем нелинейных уравнений




Цель: изучение методов решения систем нелинейных алгебраических и трансцендентных уравнений, практическое решение системы уравнений на ЭВМ, сравнительный анализ рассмотренных методов.

 

, где ; .

 

 

Метод Ньютона

 

Матрица Якоби:

.

 

Пусть задано начальное приближение x[0]. Функцию f(x) линеаризуют в точке x[0], разлагая ее в ряд Тейлора с точностью до членов первого порядка.

Тогда f(x)=0 Þ f(x)=f(x[0])+J([x-x[0])=0.

Получаем линейную систему уравнений. Если J(x[0]) не вырождена, то эта система имеет единственное решение x[1]. Линейную систему удобно решать относительно поправки Dx[0]=x-x[0], а затем вычислять очередное приближение x[1]=x[0]+Dx[0]. В общем случае: x[m+1]=x[m]+Dx[m], где Dx[m] решения линейной системы f(x[m])+J(x[m])Dx[0]=0 или в координатной форме:

 

Метод Ньютона эффективен в достаточно малой окрестности корня (здесь он обладает квадратичной сходимостью).

Критерий итерации

 

Метод Зейделя

Систему заменяют эквивалентной системой:

 

или

 

Такая система может быть получена следующим образом: , где . Задают начальное приближение x[0] и осуществляют процедуру Зейделя:

, i=1,...,n,

 

т.е. уже вычисленные приближения неизвестных x1[k+1],...,xi-1[k+1] используются для вычисления x1[k+1].

Условия прекращения

, i=1,...,n.

 

Сложно получить систему x-j(x) эквивалентную исходной и обеспечивающую сходимость.






Поделиться с друзьями:


Дата добавления: 2015-05-07; Мы поможем в написании ваших работ!; просмотров: 338 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Слабые люди всю жизнь стараются быть не хуже других. Сильным во что бы то ни стало нужно стать лучше всех. © Борис Акунин
==> читать все изречения...

2211 - | 2136 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.