Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Примеры применения аналитических сигналов [1,2]




Огибающая и мгновенная фаза сигналов. Допустим, что имеем зарегистрированный радиоимпульсный сигнал x(t) с несущей частотой wo, который содержит определенную информацию, заключенную в огибающей сигнала u(t) и его фазе j(t):

x(t) = u(t) cos (wot+j(t)). (10.2.1)

Требуется выделить информационные составляющие сигнала

Запишем выражение (10.2.1) в другой форме:

x(t) = a(t)×cos(wot) + b(t)×sin(wot), (10.2.2)

где функции a(t) и b(t) называются низкочастотными квадратурными составляющими сигнала x(t):

a(t) = u(t) cos jt, b(t) = u(t) sin jt.

u(t) = , tg j(t) = b(t)/a(t).

С использованием преобразования Гильберта из сигнала x(t) можно сформировать аналитически сопряженный сигнал (t). Математическую форму сигнала (t) получим из выражения (10.2.2) с учетом свойства модуляции преобразования Гильберта:

(t) = a(t)×sin(wоt) – b(t)×cos(wot).

z(t) = x(t) + j× (t).

Квадрат модуля сигнала z(t):

|z(t)|2 = x2(t)+ 2(t) = a2(t)[cos2(wot)+sin2(wot)] + b2(t)[cos2(wot)+sin2(wot)] = u2(t).

Отсюда, огибающая u(t) и мгновенная фаза f(t) сигнала x(t):

u(t) = . (10.2.3)

f(t) = wot+j(t) = arctg[ (t)/x(t)]. (10.2.4)

j(t) = f(t) - mot.

Мгновенная частота сигнала определяется по скорости изменения мгновенной фазы:

df(t)/dt = . (10.2.5)

Рис. 10.2.1.

Для амплитудно-модулированных сигналов с одной несущей частотой эти результаты достаточно очевидны (см. рис. 10.2.1). Но выражения (10.2.3-10.2.5), полученные из общих соображений, остаются действительными и для любых произвольных сигналов.

На рис. 10.2.2. представлен сигнал, сложенный двумя гармониками:

x(t) = a(t)×cos(w1t) + b(t)×cos(w2t).

Квадратурное дополнение и аналитический сигнал:

(t) = a(t)×sin(w1t) + b(t)×sin(w1t).

z(t) = x(t) + j× (t).

Рис. 10.2.2.

Огибающая такого сигнала, как это можно видеть на рисунке 10.2.2, должна вычисляться по формуле (10.2.3). При этом для данного сигнала получаем:

u(t) = ,

что может существенно отличаться от функции .

Мгновенная фаза сигнала, график которой приведен на рис. 10.2.3, зависит от времени нелинейно:

f(t) = .

Рис. 10.2.3. Рис. 10.2.4.

Мгновенная частота сигнала (рис. 10.2.4) также имеет нелинейную зависимость от времени, причем ее значения могут существенно превышать даже суммарное значение частот, составляющих сигнал:

w(t) = .

Аналогичная методика определения огибающих, мгновенных значений фазы и частоты применяется и для анализа случайных процессов.

Огибающие модулированных сигналов. В качестве примера применения огибающих рассмотрим связь форм относительно узкополосных радиосигналов с формой модулирующих сообщений.

Амплитудная модуляция. Уравнение модулированного сигнала:

x(t) = Uo×[1+m×s(t)]×cos wot, s(t) £ 1, m £ 1

Квадратурное дополнение и аналитический сигнал:

(t) = Uo×[1+m×s(t)]×sin wot, zx(t) = x(t) + j (t).

Огибающая сигнала x(t):

u(t) = |zx(t)| = Uo×[1+m×s(t)],

т.е. точно повторяет форму модулирующего сообщения (см. рис. 10.2.5)

Рис. 10.2.5. Амплитудная модуляция.

Балансная модуляция. Уравнение модулированного сигнала, приведенного на рис. 10.2.6:

x(t) = Uo×s(t)×cos wot,

Квадратурное дополнение, аналитический сигнал, огибающая сигнала x(t):

(t) = Uo×s(t)×sin wot, zx(t) = x(t) + j (t), u(t) = |zx(t)| = Uo×|s(t)|.

Огибающая сигнала x(t) существенно отличается от модулирующего сообщения, но связана с ним простым соотношением.

Рис. 10.2.6. Балансная модуляция.

Анализ каузальных систем. Каузальная (физически осуществимая) линейная система задается односторонним импульсным откликом h(t), t ³ 0, и имеет частотную характеристику H(f):

H(f) = X(f) - jY(f),

Осуществим обратное преобразование Фурье для всех частей выражения раздельно:

h(t) = x(t) + y(t),

x(t) = X(f) cos(2pft) df,

y(t) = Y(f) sin(2pft) df,

где x(t) и y(t) - четная и нечетная части функции h(t). Нечетная функция y(t) в каузальной системе однозначно связана с четной функцией x(t):

y(t) = sgn(t)×x(t). (10.2.6)

Осуществляя обратное преобразование Фурье обеих частей равенства (10.2.6) при известном преобразовании сигнатурной функции (sgn(t) Û -j/(pf)), получаем:

TF[y(t)] = (-j/pf) * X(f) = (-j/p) [X(u)/(f-u)] du.

Отсюда:

Y(f) = (1/p) [X(u)/(f-u)] du = ТН[X(f)],

т.е. мнимая часть спектра импульсного отклика каузальной системы (и любой каузальной функции) является преобразованием Гильберта действительной части спектра. Соответственно, уравнение для определения действительной компоненты спектра по мнимой части:

X(f) = -ТН[Y(f)] = -(1/p) [Y(u)/(f-u)] dv.

литература

1. Баскаков С.И. Радиотехнические цепи и сигналы: Учебник для вузов. - М.: Высшая школа, 1988.

2. Бендат Дж., Пирсол А. Прикладной анализ случайных данных. – М.: Мир, 1989. – 540 с.

25. Сергиенко А.Б. Цифровая обработка сигналов. – СПб.: Питер, 2003. – 608 с.





Поделиться с друзьями:


Дата добавления: 2015-05-06; Мы поможем в написании ваших работ!; просмотров: 1097 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Студент всегда отчаянный романтик! Хоть может сдать на двойку романтизм. © Эдуард А. Асадов
==> читать все изречения...

2429 - | 2175 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.