Мейоз – это особый способ деления клеток, в результате которого происходит редукция (уменьшение) числа хромосом вдвое. Впервые он был описан В. Флеммингом в 1882 г. у животных и Э. Сграсбургером в 1888 г. у растений. С помощью мейоза образуются споры и половые клетки — гаметы. В результате редукции хромосомного набора в каждую гаплоидную спору и гамету попадает по одной хромосоме из каждой пары хромосом, имеющихся в данной диплоидной клетке. В ходе дальнейшего процесса оплодотворения (слияния гамет) организм нового поколения получит опять диплоидный набор хромосом, т.е. кариотип организмов данного вида в ряду поколений остается постоянным. Таким образом, важнейшее значение мейоза заключается в обеспечении постоянства кариотипа в ряду поколений организмов данного вида при половом размножении.
Мейоз включает два быстро следующих одно за другим деления. Перед началом мейоза каждая хромосома реплицируется (удваивается в S-периоде интерфазы). В течение некоторого времени две ее образовавшиеся копии остаются связанными друг с другом центромерой. Следовательно, в каждом ядре, в котором начинается мейоз, содержится эквивалент четырех наборов гомологичных хромосом (4с).
Второе деление мейоза следует практически сразу за первым, и синтез ДНК в промежутке между ними не происходит (т. е., по сути дела, между первым и вторым делением отсутствует интерфаза).
Первое мейотическое (редукционное) деление приводит к образованию из диплоидных клеток (2n) гаплоидных клеток (n). Оно начинается с профазы I, в которой осуществляется, так же как и в митозе, упаковка наследственного материала (спирализация хромосом). Одновременно происходит сближение гомологичных (парных) хромосом своими одинаковыми участками — конъюгация (событие, которое в митозе не наблюдается). В результате конъюгации образуются хромосомные пары — биваленты. Каждая хромосома, вступая в мейоз, как отмечалось выше, имеет удвоенное содержание наследственного материала и состоит из двух хроматид, поэтому бивалент состоит из 4 нитей. Когда хромосомы находятся в конъюгированном состоянии, продолжается их дальнейшая спирализация. При этом отдельные хроматиды гомологичных хромосом переплетаются, перекрещиваются между собой. В последующем гомологичные хромосомы несколько отталкиваются одна от другой. В результате этого в местах переплетения хроматид может происходить их разрыв, и как следствие в процессе воссоединения разрывов хроматид гомологичные хромосомы обмениваются соответствующими участками. В результате хромосома, пришедшая к данному организму от отца, включает участок материнской хромосомы, и наоборот. Перекрест гомологичных хромосом, сопровождающийся обменом соответствующими участками между их хроматидами, называется кроссинговером. После кроссинговера в дальнейшем расходятся уже измененные хромосомы, т. е с другим сочетанием генов. Являясь процессом закономерным, кроссинговер приводит каждый раз к обмену разными по величине участками и обеспечивает таким образом эффективную рекомбинацию материала хромосом в гаметах.
Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и повышает выживаемость организмов в процессе эволюции.
В метафазе I завершается формирование веретена деления. Его нити прикрепляются к кинетохорам хромосом, объединенных в биваленты. В результате нити, связанные с кинетохорами гомологичных хромосом, устанавливают биваленты в плоскости экватора веретена деления.
В анафазе I гомологичные хромосомы отделяются друг от друга и расходятся к полюсам клетки. При этом к каждому полюсу отходит гаплоидный набор хромосом (каждая хромосома состоит из двух хроматид).
В телофазе I у полюсов веретена собирается одиночный, гаплоидный набор хромосом, в котором каждый вид хромосом представлен уже не парой, а одной хромосомой, состоящей из двух хроматид. В короткой по продолжительности телофазе I восстанавливается ядерная оболочка, после чего материнская клетка делится на две дочерние.
Таким образом, образование бивалентов при конъюгации гомологичных хромосом в профазе I мейоза создает условия для последующей редукции числа хромосом. Формирование гаплоидного набора в гаметах обеспечивается расхождением в анафазе I не хроматид, как в митозе, а гомологичных хромосом, которые ранее были объединены в биваленты.
Вслед за телофазой I деления следует короткая интерфаза, в которой ДНК не синтезируется, и клетки приступают к следующему делению, которое сходно с обычным митозом. Профаза II непродолжительная. Ядрышки и ядерная оболочка разрушаются, а хромосомы укорачиваются и утолщаются. Центриоли, если они присутствуют, перемещаются к противоположным полюсам клетки, появляются нити веретена деления. В метафазе II хромосомы выстраиваются в экваториальной плоскости. В анафазе II в результате движения нитей веретена деления осуществляется разделение хромосом на хроматиды, так как происходит разрушение их связей в области центромер. Каждая хроматида становится самостоятельной хромосомой. С помощью нитей веретена деления хромосомы растягиваются к полюсам клетки. Телофаза II характеризуется исчезновением нитей веретена деления, обособлением ядер и цитокинезом, завершающимся образованием из двух гаплоидных клеток четырех гаплоидных клеток. В целом, после мейоза (I и II) из одной диплоидной клетки образуются 4 клетки с гаплоидным набором хромосом.
Редукционное деление является, по сути, механизмом, препятствующим непрерывному увеличению числа хромосом при слиянии гамет, без него при половом размножении число хромосом удваивалось бы в каждом новом поколении. Иными словами, благодаря мейозу поддерживается определенное и постоянное число хромосом во всех поколениях любого вида растений, животных и грибов. Другое важное значение мейоза заключается в обеспечении чрезвычайного разнообразия генетического состава гамет как в результате кроссинговера, так и в результате различного сочетания отцовских и материнских хромосом при их независимом расхождении в анафазе I мейоза, что обеспечивает появление разнообразного и разнокачественного потомства при половом размножении организмов.