.


:




:

































 

 

 

 





 

, :

- ;

- ;

-

:

- , , , ;

- , , ; [].

 

 

 

ϳ 쳿 . ..

ij

5

/ , , (),
  , /3
  N2H2   -   0,1 0,1
AgNO3   -   0,1 0,1
NaBH4   -   0,1 0,1
  0,03 -   0,1 0,1
  , /3 0,15 - -   -
  ,     - 0,125 -
  ̳ :
  , 19-23     0,5 0,5
  ³ ,% 40-60   -   -
, / 0,2-03 0,2 -   -
 
  18000-43000   - 0,5 -
                     

 

0,9.

,% - 4%

³ ϳ ..

20.05.14

, . .

 

 

: , , , ,

', , , .

. , . : -5, -6 -1. [].

 


6. - . ᒺ -

, , , - , 24-86 , [67] ᒺ , 305-77
% ᒺ /3
1760-86       - - - -   -
23827-79       - - - - ,
5964-93       1,71-48   2 ,
7338-90   - - - - - - - - -

 


˲

1. .., .., .. Candida utilis Ȼ

2. .. ., 2009; ѳ .., .., 2010; Chekman I.S. et al., 2011; Mendez-Vilas A., 2011; .. ., 2012

3. Theron J. et al., 2008; Gang L. et al., 2011; Giannossa L.C. et al., 2013

4. .., ѳ .., 2012; Rai M. Et al., 2014

5. Galdiero S. et al., 2011; Rai M. et al., 2014

6. Elechiguerra J.L. et al., 2005; Khandelwal N. et al., 2014)

7. Baram-Pinto D. et al., 2009; Galdiero S. et al., 2011; Khandelwal N. et al., 2014

8. Borkow G., Gabbay J., 2005; 2009; Gabbay J. et al., 2006; Grass G. et al., 2011

9. Bowman M.C. et al., 2008; Di Gianvincenzo . et al., 2010; Papp I. et al., 2010

10. : 92950: 10.09.2014: , , ,

11. 6. .., .., .. , .// XII : , 2012, , . 34

12. Zhang S. and Crow S.A. Jr. Toxic Effects of Ag(I) and Hg(II) on Candida albicans and C. maltosa: a Flow Cytometric Evaluation. Applied and Environmental Microbiology. 2001, Vol. 67, No. 9. . 4030-4035. 13.

13. Dibrov, P., Dzioba, J., Gosink, K.K., and Häse, C.C. Chemiosmotic Mechanism of Antimicrobial Activity of Ag+ in Vibrio cholerae. Antimicrobial Agents and Chemotherapy, 2002, Vol. 46, No. 8. . 2668-2670.

14. .. , .. , .. , .. // 252011

15. Alt V., Bechert Th., Steinrücke P. et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement // Biomaterials. 2004. V.25, Issue 18. P.4383-4391.

16. .., .., .. . : // 77 (3) 2008 . 242269. 6.

17. David D. Evanoff Jr., Chumanov G. Synthesis and Optical Properties of Silver Nanoparticles and Arrays // Chem. Phys. Chem. 2005. Vol. 6. P. 1221123

18. Maria Eugenia F. Brollo, Roma n Lo pez-Ruiz, Diego Muraca, Compact Ag@Fe3O4 Core-shell Nanoparticles by Means of Single-step Thermal Decomposition Reaction//Scientific reports 2014 - 4:6839 |DOI:10.1038/srep0683

19. . . // , 1 (37)/2014

20. 㳿: , . . , . . , . ., . . // ³ 쳿 . 2009. 6. . 7680.

21. Subchronic inhalation toxicity of silver nanoparticles / Sung J. H., Ji J. H., Park J. D. [et al.] // Toxicological sciences. 2009. V. 108. 2 P. 452461

22. 502 14.12.2001, .

23. .., .., .., .., .. . , 2000 350 .

24. .., .. . , . . 7- . . . ճ 1976.

25. , : 2.04.05-85. .: C, 1986

26. .2.5-28-2006 .

27. . . , .: , 1989.

28. 1.1.-7-2002. ᒺ

29. .. , . ., 1970.


: 65., 6 , 18 ,29 .

ᒺ .

.

- () - , .

- , , -.

, , , .

, , . , .

, 䳿 . 5 . ᒺ, .

/ , , .

 

: , , , , , .

Abstract

Scientific report: 65p., 6 tables, 18 figures, 29 sources.

Object of study - colloidal solutions of silver nanoparticles.

Subject of research - the influence of synthesis conditions on the properties of the obtained particles.

Purpose - is to study the influence of methods of synthesis of silver nanoparticles (SNP) for their physicochemical properties, bioactive and biomedical use.

Methods - spectrophotometric analysis, transmission electron microscopy, IR-Fourier spectroscopy.

In this paper it was shown that the size of SNP depends on a number of parameters - reducing the number of its chemical nature, pH.

It was established that the addition amount maskymalnoyi reducing the size of the particles decreases. The explanation of this process lies in the competition process nucleation and growth of embryos, and the speed of the first process dominates the second.

Demonstrated aggregation and, in some cases SNP dissolution of the interaction with human saliva. SNP Dissolution of up to 5 nm in saliva can explain most of their reactivity and bioactivity. Reducing the size of SNP leads to the predominance rinse the surface above volume corresponding active surface atoms of silver.

Creating of the nanocomposite magnetite / silver requires further research, particularly in terms of stabilization systems and selection of optimal synthesis parameters to regulate the size of the clusters of silver.

 

Keywords: nanoparticles, nanosilver, colloidal solution, magnetite, clusters, nanocomposite.





:


: 2017-02-28; !; : 364 |


:

:

- , , .
==> ...

1686 - | 1469 -


© 2015-2024 lektsii.org - -

: 0.029 .