Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Оценка точности результатов измерений




 

Точность результатов многократных измерений одной и той же величины оценивают в такой последовательности.

1. Находят вероятнейшее (наиболее точное для данных усло­вий) значение измеренной величины по формуле арифметичес­кой средины х= [ l ]/п.

2. Вычисляют отклонения δi = l i – x каждого значения измерен­ной величины l 1, l 2, … l n от значения арифметической средины. Контроль вычислений: [δ] = 0.

3. По формуле Бесселя (19.2) вычисляют среднюю квадратическую погрешность одного измерения.

4. По формуле (19.3) вычисляют среднюю квадратическую по­грешность арифметической середины.

5. Если измеряют линейную величину, то подсчитывают отно­сительную среднюю квадратичную погрешность каждого изме­рения и арифметической средины.

6. При необходимости подсчитывают предельную погрешность одного измерения, которая может служить допустимым значени­ем погрешностей аналогичных измерений.

 

Таблица 20.1

 

№ п\п l, м δ, см δ2, см2 Вычисления
  121,75 -1   см M = 4,0/ = 1,6см ml / l = 1/3000 M/ l = 1/7600 ∆пр. = 12см
  121,81 +5  
  121,77 +1  
  121,70 -6  
  121,73 -3  
  121,79 +3  
Среднее 121,76 ∑ =- 1 = 81

 

Таблица 20.2

№ п/п   Время измерения, ч     t1, Cº t2 tср= (t1+t2)/2 d= (t1-t2) d2 Вычисления
    12,4 12,6 12,5 -0,2 0,04 m = = 0,17 Сº   Mtср= 0,5 = 0,12 Cº    
    11,7 12,0 11,8 -0,3 0,09
    12,0 12,0 12,0    
    15,1 14,7 14,9 +0,4 0,16
    16,0 15,8 15,9 +0,2 0,04
    20,5 20,6 20,6 -0,1 0,01
    24,9 25,2 25,0 -0,3 0,09
    25,2 25,2 25,2    
    24,4 24,2 24,3 +0,2 0,04
    20,1 20,0 20,0 +0,1 0,01
II   16,1 16,4 16,2 -0,3 0,09
    13,5 13,4 13,4 +0,1 0,01
            ∑= =-0,2 ∑= =0,58

Примечание. Если в округляемом числе последняя цифра 5, то ее округляют до четной цифры, например: 10,375 - до 10,38; 0,245 - до 0,24.

 

Пример20.1. Длина линии местности измерена шесть раз. Требуется определить вероятнейшее значение длины линии и оценить точность вы­полненных измерений. Результаты измерений и вычислений записывают по форме, приведенной в табл.20.1.

Пример20.2. На метеостанции температура воздуха измерялась в раз­ное время суток двумя одинаковыми термометрами.

Требуется определить среднюю квадратичную погрешность измере­ния температуры воздуха одним термометром и среднего значения из одновременных измерений двумя термометрами. Значения измеренных температур воздуха и оценку точности измерений записывают по фор­ме, приведенной в табл. 20.2.

Оценку точности по разностям двукратных измерений производят в такой последовательности. 1. Вычисляют среднее значение из двукратных измерений. 2. Вычисляют разности d двукратных измерений. 3. По форму­ле (19.4) вычисляют среднюю квадратичную погрешность одного изме­рения 4,0см. По формуле (19.5) вычисляют среднюю квадратичную погреш­ность среднего результата из двух измерений.

 

Назад

 

СРЕДНЯЯ КВАДРАТИЧЕСКАЯ ОШИБКА ФУНКЦИИ

ИЗМЕРЕННЫХ ВЕЛИЧИН

В тех случаях, когда пользуются косвенными методами измере­ний, ошибка результата зависит как от ошибок измеренных ве­личин, так и действий, с помощью которых вычислен искомый результат. Поэтому определение ошибок функций измеренных величин mf имеет большое практическое значение.

Рассмотрим функцию z самого общего вида от многих независимых величин l 1, l 2,…, l n:

 

z = f (l 1, l 2l n). (21.1)

 

С учетом ошибок измерений, можно записать

 

z +Δz = f (l 1 + Δ l 1, l 2 + Δ l 2, … l n + Δ l n).

 

Поскольку Δ l 1, Δ l 2, …, Δ l n малы, то функцию можно разложить в ряд Тейлора, ограничиваясь членами, содержащими только первые степени ошибок Δ l 1, Δ l 2, … Δ l n. При разложении в ряд применяются частные производные, так как в уравнении имеются несколько переменных аргументов.

 

 

z + Δz = f (l 1, l 2, … l n) + (),

откуда

 

Δz = . (21.2)

 

Для удобства записи примем, что

 

(i = 1, 2, …, n),

тогда уравнение (21.2) примет вид

 

Δz = K 1Δ l 1 + K 2Δ l 2 +… + K nΔ l n, (21.3)

 

где K 1, K 2, … K n – постоянные числа.

Возведем уравнение (21.3) в квадрат и разделим на n

 

 

Если выполнен ряд измерений, то можно получить n аналогичных равенств, просуммировав которые можно получить уравнение

 

(21.4)

но так как

 

li Δ li+ 1] = 0,

то

 

,

и учитывая, что

а

то

(21.5)

т.е. квадрат средней квадратической ошибки функции общего вида равен сумме квадратов произведений частных производных по каждому аргументу на среднюю квадратическую ошибку соответствующего аргумента.Назад

РАЗДЕЛ 2

 

ГЕОДЕЗИЧЕСКИЕ ИЗМЕРЕНИЯ

ГЛАВА 5

 

ИЗМЕРЕНИЕ ДЛИНЫ ЛИНИЙ

 

ВВОДНЫЕ СВЕДЕНИЯ

Измерения – процесс сравнения какой-либо величи­ны с другой одноименной величиной, принимаемой за единицу.

Геодезические измерения позволяют определять от­носительное взаимное расположение отдельных точек земной поверхности. Геодезические измерения бывают: 1) линейными, в результате которых на местности определяются расстояния между заданными точками; 2) угловыми, определяющими значения горизонталь­ных и вертикальных углов на земной поверхности в дан­ных вершинах между направлениями на некоторые за­данные точки; 3) высотными (нивелирование), в ре­зультате которых определяются разности высот отдель­ных точек, т. е. разности расстояний по нормали от при­нятой отсчетной поверхности до данных точек.

В России для перечисленных видов геодезических измерений используются следующие единицы:

а) в линейных измерениях (горизонтальных и вертикальных) – метр. Эталон длины метра физиче­ски реализован в виде однометрового платино-иридиево­го жезла 28, хранящегося во Всероссийском научно-ис­следовательском институте метрологии;

б) в угловых измерениях – окружность и ее доли – градус, равный 1/360 окружности; минута, равная 1/60 градуса; секунда, равная 1/60 минуты. В некоторых странах, например в ФРГ, применяется градовая (мет­рическая) система: 1 град, равный 1/400 окружности; 1 минута, равная 1/100 града; 1 секунда, равная 1/100 ми­нуты.

Измерение расстояний производят непосредственным или косвенным методами. При непосредственном методе мерный прибор (измерительную рулетку, землемерную ленту и т. п.) последовательно укладывают в створе изме­ряемого отрезка. При косвенном методе измеряют вспо­могательные параметры (углы, базисы, физические пара­метры и т. п.), а длину отрезка вычисляют по формуле, отображающей зависимость между измеренными вели­чинами и длиной отрезка. Непосредственно длины отрезков измеряются с помощью механических мерных приборов – мерных лент, рулеток, длинномеров и т. д. Косвенные методы реализуются с использованием различных видов дальномеров – оптических, радиофизических, лазерных и т. д.

Точность определения расстояний зависит от метода измерений, применяемого прибора, условий измерений и колеблется от 1:200 до 1:1000 000 измеряемого рас­стояния. Назад

 

 





Поделиться с друзьями:


Дата добавления: 2015-11-05; Мы поможем в написании ваших работ!; просмотров: 3949 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Наука — это организованные знания, мудрость — это организованная жизнь. © Иммануил Кант
==> читать все изречения...

2931 - | 2747 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.