.


:




:

































 

 

 

 


. .




. , , = b-a (, -, 1- ), :

s(t) = Sn exp(jnDwt), Sn = S(nDw), Dw = 2p/T, (1)

Sn :

Sn = (1/T) s(t) exp(-jnDwt) dt. (2)

exp(jnDwt) , . S(nDw) - s(t). , .. n , : Dw = 2p/ ( Df = 1/T). n = 1, w1 = 1×Dw = 2p/T ( f1 = 1/T), ( ), nw1 n>1 . S(nDw) n .

exp(jnDwt), -¥ < n < ¥ L2[a,b] - , Sn (2) s(t) . , s(t) (1) L2[a,b], Sn exp(jnDwt). (2)

exp(jwt) = cos(wt) j×sin(wt)

:

Sn = (1/T) s(t) [cos(nDwt) - j sin(nDwt)] dt = n - jBn. (3)

An ≡ A(nDw) = (1/T) s(t) cos(nDwt) dt, (4)

Bn ≡ B(nDw) = (1/T) s(t) sin(nDwt) dt. (5)

. 4 ( (1-3.3), =40) . , A(nDw) = A(-nDw), A(nDw) (4) cos(nDwt) = cos(-nDwt). B(nDw) = -B(-nDw), (5) sin(nDwt) = - sin(-nDwt).

. 4. .

(3) . , :

Sn = Rn exp(jjn), (3')

Rn2 ≡ R2(nDw) = A2(nDw)+B2(nDw),jn ≡ j(nDw) = arctg(-B(nDw)/A(nDw)).

. 5. .

R(nDw) - , ( j(nDw)) - . : R(nDw) = R(-nDw), : j(nDw) = -j(-nDw). , . 4, . 5. 2p ( -p -2p).

s(t) , B(nDw) (5) , .. s(t)sin(nDwt) . , . , s(t) (nDw) ( ) . . . 6() , . 6() . , .

. 6. .

n = 0 = 0, :

S0 ≡ Ao ≡ Ro ≡ (1/T) s(t) dt.

2.5. .

( , S0), :

s(t) = +2 (An cos(nDwt) + Bn sin(nDwt)), (6)
s(t) = +2 Rn cos(nDwt + jn). (6')

An, Bn (4-5), Rn jn - (3').

(6) s(t) ( ) , (.. 2×An, 2×Bn) , nDw. ( nDw) . . 4, , ( , , (6), ). ( ). (6'). - , . (. . 5) . 0 p, p/2.

. , () ( ).

7 N = 8 ( , n = ws/Dw), N = 16 ( ) N=40 ( ). , , . . , . . ( ) ( ), , .

. , .

, (, , ..) (a,b), . , (1-6) ( ) = b-a. , , . 8. , . . ( ) . .

. 7. ()

. 8.

 





:


: 2017-01-21; !; : 1563 |


:

:

: , .
==> ...

2235 - | 1858 -


© 2015-2024 lektsii.org - -

: 0.011 .