.


:




:

































 

 

 

 


.

- , , .
- , - (), .

.

:

1.; 2.; 3. 1. ( 10 ); 2. ( 100 ); 3. ( 2000 ); 4. ( 10000 ); 5. ( 10000 );
1. ; 2.; 3.-; 4. ; 5.; 6.; 7.-; 1.; 2.; 3.; 4.;  
1.; 2.; 3.; 4. (); 5.; 1.; 2.;  
1.; 2.; 3.. ; 1.; 2.; 3.
 

.

. - , , , . , , . , -, . , , , . , .

.

, , . , . . , . . , , . , . . .
. 0 1, 2 3 (.19.1). . 1 0 ( j10), 2 1 ( S21) 3 2 ( S32). 3 , . ( ) . , .

. 19.1

, , , .

. 19.2

, CD, . . , , .

, , () ui. Dxi, . . 19.2.

. .
- .

- , , (, ).

, :

  • ( ) - , ;
  • () - , "", ;
  • () - , , "", .

, : . "" , - ( ); "" - , ( ).

, (.19.3).

. 19.3

: 3 3 1.

: - (A,B,C ..); , (0/1,1/2 ..); ( - , ); ( 1 3, 4 5); .


- , .
- . . , .
W - .

:

- () .

- , ( ) .

: fC - , 3, lCM - 3.

k =  / (4), . , .19.4,

: W = 6 * 3 - (3 * 2 - 5 * 1) = 18 - 11 = 7; : M = 7 - 6 = 1; : W = [10 + 10 + 10 ] + 21 + [32 + 32 + 32 ].

 

. 19.4

. , : . , . () 0x0y0z0 - . :

xM, yM, zM;

rsM,  M, zM;

rM,  M,  M.

,  , . . 19.5 .

, ,

(1)

, (2)

, (3)

, , (4)

(5)

, (6)

, (7)

, , .

:

, ;

, , ;

, .

, , .

, . . : , , , ; , ( ), .

, , . , - , [4].

. , , . , .

: ; ; .

.

 

. 19.5

:

  • , , : ;
  • , , , ;
  • ( ), .

. . 19.6.
, . . 25685-83 , 19.1. . , , 19.2. , , .

. 19.6

  "" . 19.1
()
()
         

 

 

. , . , ( ) . , , 19.2

. . ASEA (.19.7). :

  • 2 - , 4,5 2;
  • 3 - , ( 6,7 8) ( 8,9,2 3).

, ( 1,2 3) . . , . , . , ( , ), , .
. SKILAM SANCIO (. 19.8) , . , .
. .

 
. 19.7 . 19.8  
     

- , . , . , . , ( ). , ( , ) , . , . . .
. (VM <0.5 /), (0.5 < VM < 1.0 /) (VM >1.0/) . 20% - .
. (D rM < 1), (0.1 < D rM < 1 ) (DrM < 0.1 ) .

 

 

19

1. , ?(.1-2)

2. ?(.2-4)

3. ? ?(.5-6)

4. , ( ) (.4-6)

5. ? ? (.5-6)

6. .(.7-9)

 

. . . . . -

1. .., .., .. - // . : . 1970. . 108. .6678.

2. , . . . / .. , . . , . . ; . . . . .: ,1989. 471 .

3. .. i - i i i, // i. i: . 2003. 13.2. . 9093.

4. .. // : . : . 2003, . 6. . 37.

 

1. ., ., . .- .: , 1989.

2. Kane T., Dynamics, New York, Holt, Rihehart and Wiston, 1968.

3. . .- .: ,1980.

4. Denavit J, Hartenberg R.S. A kinematic notation for lower-pair mechanisms based on matrices., J. Appl. Mech., 77, 1955, c.215-221.

5. ., ., . . - .: , 1989.

6. .. -. . , . ., 1974, N 6, .51-56.

7. Vukobratovic M., Stepanenko Y. Mathematical model of general anthropomorphic systems. Math Biosciences, Vol.17, 1973, c.191-242.

8. . , .: , 1988.

9. Hollerbach J. A recursive Lagrangian formulation of manipulator dynamics and comparative study of dynamic complication complexity. IEEE Trans. on SMC, SMC-10, No 11, 1980, c.730-736.

10. Kahn M.E., Roth B. The near-minimum-time control of open -loop articulated kinematic chains, ASME J. of Dynam Syst, Measur.and Countr., vol. 93, 1971, c.164-172.

11. Uicer J.J. Dynamic force analysis of spatial linkages, ASME J. of appl. mech., June, 1967, c.418-424.

12. Lee C.S.G., Lee B.H., Nigam R. Development of generalized d'Alambert Equation of motion for mechanical manipulators, Proc 2nd conf. Decision and Control, San Antonio, 1983, c. 1205-1210

13. Thomas M, Tesar D. Dynamic modeling of serial manipulator arms. Trans. of ASME, vol. 104, Sept, 1982,c.218-228.

14. Mahil S. On the application of Lagrange's method to the description of dynamic systems. IEEE Trans. on SMC, vol SMC-12, N 6, 1982.

15. Wang L.T., Ravani B. Recursive computations of kinematic and dynamic equations for mechanical manipulators. IEEE J. of Rob. and Autom., vol. RA-1, N 3, Sept. 1985, c.124-131.

16. Balafoutis C, Patel R., Misra P. Efficient modeling and computation of manipulator dynamics using orthogonal cartesian tensors. IEEE J. of Rob. and Autom., 4, N 6, c.665-676.

17. Castelain J.M, Bernier D. A new program based on the hipercomplex theory for automatic generation of the direct differential model of robot manipulators. Mech. mach. theory, vol. 25, N 1, 1990, c.69-83.

18. Mladenova C. Mathematical modeling and control of manipulator systems. Int. J. Robotics and computer-integrated manufacturing, vol. 8, N 4, 1991, c 233-242.

19. F.C. Park, J. Choi, and S.R. Ploen, A Li Group Formulation of Robot Dynamics,The Int. J. of Robotics Research, Vol.14, No.6, Dec.1995.

20. Paul R. Manipulator cartesian path control. IEEE Trans. on SMC-9, Febr, 1979, c.702-711.

21. Vukobratovic M, Potkonjak V. Contribution to automatic forming of active chain models via Lagrangian form. J of Appl. Mech., N 1, 1979.

22. Renaud N. An efficient iterative analytical procedure for obtaining a robot manipulator dynamic model. Proc. of FirstInt. Symp. of Rob. Research, Bretton Woods, New Hampshire, USA,1983.

23. Li C.G. A new method for dynamic analysis of robot manipulators. IEEE Trans. on Syst., Man and Cybern., 1988, 18, N 1, c.105-114.

24. Walker M.W., Orin D.E. Efficient dynamic computer simulation of robotic mechanisms. ASME J. of Dyn. Syst.,Meas. and Contr., vol. 104, Sept. 1982, c.205-211.

25. Armstrong W.W. Recursive solution to the equations of motion of an n-link manipulator. Proc of the 5th World Congress on Theory of Mach. and Mech, Montreal, 1979, c. 1343-1346.

26. .., .. . " ", , 1983, 117-126.

27. .., .., .. : .- .: , 1980.

28. Huston R.L. The use of Kane's metod in the modeling and simulation of robotic systems. Proc. IMACS Symp. Syst. Modeling and Simul., Cetraro, 18-21 sept, 1988.

29. Ma X., Xu X. A futher study of Kane's equations. Proc IEEE Int Conf Syst, Man and Cybern, Beijing, Aug. 8-12, 1988, c.107-112.

30. .. . . , , N 6, 1989, 46-54.

31. .., " ", VIII , , 2001, . 490.

32. .., .., .., , . .. , N 62, 1998, 22 .

33. Dapper, R. Maafl, V. Zahn, R. Eckmiller, Neural Force Control (NFC) Applied to Industrial Manipulators in Interaction with Moving Rigid Objects, Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, May 1998.

34. S. Jung, S. B. Yim, T. C. Hsia, Experimental Studies of Neural Network Impedance Force Control for Robot Manipulators, Proceedings of the 2001 IEEE International Conference on Robotics & Automation, Seoul, Korea, May 2001.

35. G. Rodriguez, A. Jain and K. Kreutz-Delgado, "A Spatial Operator Algebra for Manipulator Modelling and Control," Int. J. Robotics Research, vol. 10, no. 4, pp. 371-381, 1991.

36. A. Jain, G. Rodriguez, Computational Robot Dynamics Using Spatial Operators, Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, April 2000.

37. M. Emami, A. Goldenberg, I. Turksen, Fuzzy-Logic Dynamics Modeling of Robot Manipulators, Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, May 1998.

38. R. Featherstone, D. Orin, Robot Dynamics: Equations and Algorithms, Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, April 2000.

39. Cheng P., Weng C., Chen C. Symbolic derivation of dynamic equation of motion for robot manipulator using program symbolic method. IEEE J. Rob. and Autom, 4, N 6, 1988, c. 599-609.

40. Ju M.S., Mansor J.M. Comparision of methods for developing the dynamics of rigid body systems. Int. J. Rob. Res., N6, 1989, c.19-27.

41. .., , . .. 5-19-93, 1993, 25 .

42. Lathrop L.H. Parallelism in manipulator dynamics. Int. J. Rob. Res., vol.4, No 2, 1985, c.80-102.

43. R. Featherstone, "A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm," Int. Y. Robotics Research, vol. 18, no. 9, pp. 867-875, 1999.

44. A. Fijany, I. Sharf and G. M. T. D'Eleuterio, "Parallel O(logN) Algorithms for Computation of Manipulator Forward Dynamics," IEEE Trans. Robotics & Automation, vol. 11, no. 3, pp. 389-400, June 1995.

45. Vukobratovic M, Kircanski N, Real-time dynamics of manipulation robots, Springer-Verlag, 1985.

46. Han J.-Y. Fault-tolerant computing for robot kinematics using linear arithmetic code. IEEE Int. Conf. Robotics and Automation, Cincinnati, May May 13-18, 1990, vol. 1, c.285-290.

 



<== | ==>
. | 
:


: 2016-12-06; !; : 3333 |


:

:

,
==> ...

1731 - | 1724 -


© 2015-2024 lektsii.org - -

: 0.076 .