Урок, преподнесенный работами Лоренца и Пуанкаре, состоит в том, что математическое исследование, в особенности на основе анализа симметрии, может стать источником выдающихся достижений в физике. Даже если заложенные в математическом описании симметрии трудно или невозможно представить себе наглядно физически, они могут указать путь к выявлению новых фундаментальных принципов природы. Поиск новых симметрий стал главным средством, помогающим физику в наши дни продвигаться к пониманию мира. Как мы увидим далее, суперсила — это высшее проявление симметрии в природе.
Все симметрии, о которых говорилось до сих пор, являются симметриями пространства или пространства-времени. Но понятие симметрии можно расширить, включив в него более абстрактные понятия. Как уже отмечалось, между симметрией и законами сохранения существует тесная связь. Один из наиболее твердо установленных законов сохранения — закон сохранения электрического заряда. Заряд может быть положительным и отрицательным, и закон сохранения заряда утверждает, что сумма положительного и отрицательного зарядов остается неизменной величиной. Если положительный заряд встречается с равным по абсолютной величине отрицательным зарядом, они нейтрализуют друг друга, создавая в сумме нулевой заряд. Аналогично положительный заряд может возникать, если одновременно возникает равный по абсолютной величине отрицательный заряд. Но возникновение или исчезновение результирующего заряда абсолютно исключено.
Но коль скоро электрический заряд сохраняется, естественно возникает вопрос о том, какова природа симметрии, связанной с этим законом сохранения. Тщетно стали бы мы искать геометрическую симметрию, лежащую в основе закона сохранения электрического заряда. Но в природе далеко не все симметрии имеют геометрический характер. Рассмотрим, например, явление инфляции в экономике. Когда реальная стоимость доллара падает, падает и благосостояние лиц с фиксированным доходом. Но если чей-то доход следует индексу цен, то реальная покупательная способность этого лица не будет зависеть от стоимости доллара. Можно сказать, что доход, “привязанный” к уровню цен, симметричен относительно инфляционных процессов.
В физике также существует много симметрий негеометрического характера. Одна из них связана с работой, совершаемой при подъеме тела. Затрачиваемая энергия зависит от разности высот, которую требуется преодолеть при этом (но не зависит от траектории подъема). Однако энергия не зависит от абсолютной высоты: безразлично, измеряются высоты от уровня моря или от уровня суши, — важна только разность высот. Следовательно, существует симметрия относительно выбора начала отсчета высот.
Аналогичная симметрия существует и для электрических полей. Роль высоты в этом случае играет напряжение (электрический потенциал). Если электрический заряд движется в электрическом поле от одной точки к другой, то затрачиваемая энергия зависит только от разности потенциалов между конечной и начальной точками. Если к системе приложить Дополнительное постоянное напряжение, то энергия, затрачиваемая на перемещение электрического заряда в поле, не изменится. Это еще одна скрытая симметрия уравнений Максвелла для электромагнитного поля!
Все три приведенных выше примера могут служить иллюстрациями того, что физики называют калибровочными симметриями. Все три указанные симметрии включают' в тебя “калибровку”, т.е. изменение масштаба, соответственно — денег, высоты и напряжения. Все три симметрии — абстрактные в том смысле, что они по своему характеру не геометрические. Мы не сможем, взглянув на соответствующие явления, увидеть симметрию. Однако все три скрытые симметрии являются важными характеристиками рассматриваемой системы. Именно калибровочная симметрия напряжений обеспечивает сохранение электрического заряда.