Радиоактивность
Почти 90 % из 2500 известных атомных ядер нестабильны. Нестабильное ядро самопроизвольно превращается в другие ядра с испусканием частиц. Это свойство ядер называется радиоактивностью. У больших ядер нестабильность возникает вследствие конкуренции между притяжением нуклонов ядерными силами и кулоновским отталкиванием протонов. Стабильных ядер с зарядовым числом Z > 83 и массовым числом A > 209 не существует. Но радиоактивными могут оказаться и ядра атомов с существенно меньшими значениями чисел Z и A. Если ядро содержит значительно больше протонов, чем нейтронов, то нестабильность обуславливается избытком энергии кулоновского взаимодействия. Ядра, которые содержат избыток нейтронов, оказываются нестабильными вследствие того, что масса нейтрона превышает массу протона. Увеличение массы ядра приводит к увеличению его энергии.
Явление радиоактивности было открыто в 1896 году французским физиком А. Беккерелем, который обнаружил, что соли урана испускают неизвестное излучение, способное проникать через непрозрачные для света преграды и вызывать почернение фотоэмульсии. Через два года французские физики М. и П. Кюри обнаружили радиоактивность тория и открыли два новых радиоактивных элемента – полоний и радий
В последующие годы исследованием природы радиоактивных излучений занимались многие физики, в том числе Э. Резерфорд и его ученики. Было выяснено, что радиоактивные ядра могут испускать частицы трех видов: положительно и отрицательно заряженные и нейтральные. Эти три вида излучений были названы α-, β- и γ-излучениями. На рис. 6.7.1 изображена схема эксперимента, позволяющая обнаружить сложный состав радиоактивного излучения. В магнитном поле α- и β-лучи испытывают отклонения в противоположные стороны, причем β-лучи отклоняются значительно больше. γ-лучи в магнитном поле вообще не отклоняются.
Рисунок 6.7.1. Схема опыта по обнаружению α-, β- и γ-излучений. К – свинцовый контейнер, П – радиоактивный препарат, Ф – фотопластинка, – магнитное поле |
Эти три вида радиоактивных излучений сильно отличаются друг от друга по способности ионизировать атомы вещества и, следовательно, по проникающей способности. Наименьшей проникающей способностью обладает α-излучение. В воздухе при нормальных условиях α-лучи проходят путь в несколько сантиметров. β-лучи гораздо меньше поглощаются веществом. Они способны пройти через слой алюминия толщиной в несколько миллиметров. Наибольшей проникающей способностью обладают γ-лучи, способные проходить через слой свинца толщиной 5–10 см.
Во втором десятилетии XX века, после открытия Э. Резерфордом ядерного строения атомов было твердо установлено, что радиоактивность – это свойство атомных ядер. Исследования показали, что α-лучи представляют поток α-частиц – ядер гелия , β-лучи – это поток электронов, γ-лучи представляют собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны λ < 10–10 м и вследствие этого – ярко выраженными корпускулярными свойствами, т. е. является потоком частиц – γ-квантов.
Альфа-распад. Альфа-распадом называется самопроизвольное превращение атомного ядра с числом протонов Z и нейтронов N в другое (дочернее) ядро, содержащее число протонов Z – 2 и нейтронов N – 2. При этом испускается α-частица – ядро атома гелия . Примером такого процесса может служить α-распад радия:
Альфа-частицы, испускаемые ядрами атомов радия, использовались Резерфордом в опытах по рассеянию на ядрах тяжелых элементов. Скорость α-частиц, испускаемых при α-распаде ядер радия, измеренная по кривизне траектории в магнитном поле, приблизительно равна 1,5·107 м/с, а соответствующая кинетическая энергия около 7,5·10–13 Дж(приблизительно 4,8 МэВ). Эта величина легко может быть определена по известным значениям масс материнского и дочернего ядер и ядра гелия. Хотя скорость вылетающейα-частицы огромна, но она все же составляет только 5 % от скорости света, поэтому при расчете можно пользоваться нерелятивистским выражением для кинетической энергии.
Исследования показали, что радиоактивное вещество может испускать α-частицы с несколькими дискретными значениями энергий. Это объясняется тем, что ядра могут находиться, подобно атомам, в разных возбужденных состояниях. В одном из таких возбужденных состояний может оказаться дочернее ядро при α-распаде. При последующем переходе этого ядра в основное состояние испускается γ-квант. Схема α-распада радия с испусканием α-частиц с двумя значениями кинетических энергий приведена на рис. 6.7.2.
Рисунок 6.7.2. Энергетическая диаграмма α-распада ядер радия. Указано возбужденное состояние ядра радона Переход из возбужденного состояния ядра радона в основное сопровождается излучением γ-кванта с энергией 0,186 МэВ |
Таким образом, α-распад ядер во многих случаях сопровождается γ-излучением.
В теории α-распада предполагается, что внутри ядер могут образовываться группы, состоящие из двух протонов и двух нейтронов, т. е. α-частица. Материнское ядро является для α-частиц потенциальной ямой, которая ограничена потенциальным барьером. Энергия α-частицы в ядре недостаточна для преодоления этого барьера (рис. 6.7.3). Вылетα-частицы из ядра оказывается возможным только благодаря квантово-механическому явлению, которое называется туннельным эффектом. Согласно квантовой механике, существуют отличная от нуля вероятность прохождения частицы под потенциальным барьером. Явление туннелирования имеет вероятностный характер.
Рисунок 6.7.3. Туннелирование α-частицы сквозь потенциальный барьер |
Бета-распад. При бета-распаде из ядра вылетает электрон. Внутри ядер электроны существовать не могут (см. § 6.5), они возникают при β-распаде в результате превращения нейтрона в протон. Этот процесс может происходить не только внутри ядра, но и со свободными нейтронами. Среднее время жизни свободного нейтрона составляет около 15 минут. При распаде нейтрон превращается в протон и электрон
Измерения показали, что в этом процессе наблюдается кажущееся нарушение закона сохранения энергии, так как суммарная энергия протона и электрона, возникающих при распаде нейтрона, меньше энергии нейтрона. В 1931 году В. Паули высказал предположение, что при распаде нейтрона выделяется еще одна частица с нулевыми значениями массы и заряда, которая уносит с собой часть энергии. Новая частица получила название нейтрино (маленький нейтрон). Из-за отсутствия у нейтрино заряда и массы эта частица очень слабо взаимодействует с атомами вещества, поэтому ее чрезвычайно трудно обнаружить в эксперименте. Ионизирующая способность нейтрино столь мала, что один акт ионизации в воздухе приходится приблизительно на 500 км пути. Эта частица была обнаружена лишь в 1953 г. В настоящее время известно, что существует несколько разновидностей нейтрино. В процессе распада нейтрона возникает частица, которая называется электронным антинейтрино. Она обозначается символом Поэтому реакция распада нейтрона записывается в виде
Аналогичный процесс происходит и внутри ядер при β-распаде. Электрон, образующийся в результате распада одного из ядерных нейтронов, немедленно выбрасывается из «родительского дома» (ядра) с огромной скоростью, которая может отличаться от скорости света лишь на доли процента. Так как распределение энергии, выделяющейся при β-распаде, между электроном, нейтрино и дочерним ядром носит случайный характер, β-электроны могут иметь различные скорости в широком интервале значений.
При β-распаде зарядовое число Z увеличивается на единицу, а массовое число A остается неизменным. Дочернее ядро оказывается ядром одного из изотопов элемента, порядковый номер которого в таблице Менделеева на единицу превышает порядковый номер исходного ядра. Типичным примером β-распада может служить превращение изотона тория возникающего при α-распаде урана в палладий
Наряду с электронным β-распадом обнаружен так называемый позитронный β+-распад, при котором из ядра вылетают позитрон и нейтрино . Позитрон – это частица-двойник электрона, отличающаяся от него только знаком заряда. Существование позитрона было предсказано выдающимся физиком П. Дираком в 1928 г. Через несколько лет позитрон был обнаружен в составе космических лучей. Позитроны возникают в результате реакции превращения протона в нейтрон по следующей схеме:
Гамма-распад. В отличие от α- и β-радиоактивности, γ-радиоактивность ядер не связана с изменением внутренней структуры ядра и не сопровождается изменением зарядового или массового чисел. Как при α-, так и при β-распаде дочернее ядро может оказаться в некотором возбужденном состоянии и иметь избыток энергии. Переход ядра из возбужденного состояния в основное сопровождается испусканием одного или нескольких γ-квантов, энергия которых может достигать нескольких МэВ.
Закон радиоактивного распада. В любом образце радиоактивного вещества содержится огромное число радиоактивных атомов. Так как радиоактивный распад имеет случайный характер и не зависит от внешних условий, то закон убывания количества N (t) нераспавшихся к данному моменту времени t ядер может служить важной статистической характеристикой процесса радиоактивного распада.
Пусть за малый промежуток времени Δ t количество нераспавшихся ядер N (t) изменилось на Δ N < 0. Так как вероятность распада каждого ядра неизменна во времени, что число распадов будет пропорционально количеству ядер N (t) и промежутку времени Δ t:
Δ N = –λ N (t) Δ t. |
Коэффициент пропорциональности λ – это вероятность распада ядра за время Δ t = 1 с. Эта формула означает, что скорость изменения функции N (t) прямо пропорциональна самой функции.
Подобная зависимость возникает во многих физических задачах (например, при разряде конденсатора через резистор). Решение этого уравнения приводит к экспоненциальному закону:
|
где N 0 – начальное число радиоактивных ядер при t = 0. За время τ = 1 / λ количество нераспавшихся ядер уменьшится в e ≈ 2,7 раза. Величину τ называют средним временем жизни радиоактивного ядра.
Для практического использования закон радиоактивного распада удобно записать в другом виде, используя в качестве основания число 2, а не e:
|
Величина T называется периодом полураспада. За время T распадается половина первоначального количества радиоактивных ядер. Величины T и τ связаны соотношением
Рис. 6.7.4 иллюстрирует закон радиоактивного распада.
Рисунок 6.7.4. Закон радиоактивного распада |
Период полураспада – основная величина, характеризующая скорость процесса. Чем меньше период полураспада, тем интенсивнее протекает распад. Так, для урана T ≈ 4,5 млрд лет, а для радия T ≈ 1600 лет. Поэтому активность радия значительно выше, чем урана. Существуют радиоактивные элементы с периодом полураспада в доли секунды.
При α- и β-радиоактивном распаде дочернее ядро также может оказаться нестабильным. Поэтому возможны серии последовательных радиоактивных распадов, которые заканчиваются образованием стабильных ядер. В природе существует несколько таких серий. Наиболее длинной является серия состоящая из 14 последовательных распадов (8 α-распадов и 6 β-распадов). Эта серия заканчивается стабильным изотопом свинца (рис. 6.7.5).
Рисунок 6.7.5. Схема распада радиоактивной серии Указаны периоды полураспада |
В природе существуют еще несколько радиоактивных серий, аналогичных серии . Известна также серия, которая начинается с нептуния не обнаруженного в естественных условиях, и заканчивается на висмуте Эта серия радиоактивных распадов возникает в ядерных реакторах.
Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате β-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.
Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры радиационной защиты людей, которые могут попасть в зону действия излучения.
Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон Как видно из схемы, изображенной на рис. 6.7.5, радон является продуктом α-распада радия и имеет период полураспада T = 3,82 сут. Радий в небольших количествах содержится в почве, в камнях, в различных строительных конструкциях. Несмотря на сравнительно небольшое время жизни, концентрация радона непрерывно восполняется за счет новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает α-частицы и превращается в полоний который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана (рис. 6.7.5). По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55 % ионизирующей радиации за счет радона и только 11 % за счет медицинских процедур. Вклад космических лучей составляет примерно 8 %. Общая доза облучения, которую получает человек за жизнь, во много раз меньше предельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.
Рентгеновские излучение и его применение на практике.
Рентген Вильгельм (1845—1923) — немецкий физик, обнаруживший в 1895 г. коротковолновое электромагнитное излучение — рентгеновские лучи. Открытие рентгеновских лучей оказало огромное влияние на все последующее развитие физики, в частности привело к открытию радиоактивности. Ему была присуждена первая Нобелевская премия по физике. Способствовал быстрому распространению практического применения своего открытия в медицине. Конструкция созданной им первой рентгеновской трубки для получения рентгеновских лучей почти не изменилась до настоящего времени.
В конце XIX в. всеобщее внимание физиков привлек газовый разряд при малом давлении. При этих условиях в газоразрядной трубке создавались потоки очень быстрых электронов. В то время их называли катодными лучами. Природа таких лучей еще не была с достоверностью установлена. Известно было лишь, что они берут начало на катоде трубки.
Занявшись исследованием катодных лучей. Рентген скоро заметил, что фотопластинка вблизи разрядной трубки оказывалась засвеченной даже в том случае, когда она была завернута в черную бумагу. После этого ему удалось наблюдать еще одно очень поразившее его явление. Бумажный экран, смоченный раствором платиносинеродистого бария, начинал светиться, если им обертывалась разрядная трубка. Причем когда Рентген держал руку между трубкой и экраном, то на экране были видны темные тени костей на фоне более светлых очертаний всей кисти руки.
Ученый понял, что при работе разрядной трубки возникает какое-то неизвестное ранее сильно проникающее излучение. Он назвал его Х-лучами. Впоследствии за этим излучением прочно укрепился термин «рентгеновские лучи».
Рентген обнаружил, что новое излучение появлялось в том месте, где катодные лучи (потоки быстрых электронов) сталкивались со стеклянной стенкой трубки. В этом месте стекло светилось зеленоватым светом.
Последующие опыты показали, что Х-лучи возникают при торможении быстрых электронов любым препятствием, в частности металлическими электродами.
Свойства рентгеновских лучей. Лучи, открытые Рентгеном, действовали на фотопластинку, вызывали ионизацию воздуха, но заметным образом не отражались от каких-либо веществ и не испытывали преломления. Электромагнитное поле не оказывало никакого влияния на направление их распространения.
Сразу же возникло предположение, что рентгеновские лучи — это электромагнитные волны, которые излучаются при резком торможении электронов. Большая проникающая способность рентгеновских лучей и прочие их особенности связывались с малой длиной волны. По эта гипотеза нуждалась в доказательствах, и доказательства были получены спустя 15 лет после смерти Рентгена.
Дифракция рентгеновских лучей. Если рентгеновское излучение представляет собой электромагнитные волны, то оно должно обнаруживать дифракцию — явление, присущее всем видам волн. Сначала пропускали рентгеновские лучи через очень узкие щели в свинцовых пластинках, но ничего похожего на дифракцию обнаружить не удавалось.
Немецкий физик Макс Лауэ предположил, что длина волны рентгеновских лучей слишком мала, для того чтобы можно было обнаружить дифракцию этих волн на искусственно созданных препятствиях. Ведь нельзя сделать щели размером 10-8 см, поскольку таковы размеры самих атомов. А что, если рентгеновские лучи имеют примерно такую же длину волны? Тогда остается единственная возможность — использовать кристаллы. Они представляют собой упорядоченные структуры, где расстояния между отдельными атомами по порядку величины равны размерам самих атомов, т. е. 10-8 см. Кристалл с его периодической структурой и есть то естественное устройство, которое неизбежно должно вызвать заметную дифракцию волн, если их длина волны близка к размерам атомов.
И вот узкий пучок рентгеновских лучей был направлен на кристалл, за которым располагалась фотопластинка. Результат полностью согласовался с самыми оптимистическими ожиданиями! Наряду с большим центральным пятном, которое давали лучи, распространяющиеся по прямой, возникли регулярно расположенные небольшие пятнышки вокруг центрального пятна (рис. 10.5). Появление этих пятнышек можно было объяснить только дифракцией рентгеновских лучей на упорядоченной структуре кристалла.
Исследование дифракционной картины позволило определить длину волны рентгеновских лучей. Она оказалась меньше длины волны ультрафиолетового излучения и по порядку величины была равна размерам атома.
Применение рентгеновских лучей. Рентгеновские лучи широко используют на практике.
В медицине они применяются для постановки правильного диагноза заболевания, а также для лечения раковых заболеваний.
Поглощение рентгеновских лучей пропорционально плотности вещества. Поэтому с помощью рентгеновских лучей можно получать фотографии внутренних органов человекa. На этих фотографиях хорошо различимы кости скелета (рис. 10.6) и места перерождений мягких тканей.
Весьма обширны применения рентгеновских лучей в научных исследованиях. По дифракционной картине, даваемой рентгеновскими лучами при их прохождении сквозь кристаллы, удается установить порядок расположения атомов в пространстве — структуру кристаллов. Сделать это для неорганических кристаллических веществ оказалось не очень сложным. Но с помощью рентгеноструктурного анализа можно расшифровать также строение сложнейших органических соединений, в том числе белков. В частности, была определена структура молекулы гемоглобина, содержащей десятки тысяч атомов.
Эти достижения стали возможны благодаря тому, что длина волны рентгеновских лучей очень мала, именно поэтому удалось «увидеть» молекулярные структуры, а именно: получить дифракционную картину, с помощью которой после ее расшифровки можно восстановить характер пространственного расположения атомов.
Устройство рентгеновской трубки. В настоящее время для получения рентгеновских лучей разработаны весьма совершенные устройства, называемые рентгеновскими трубками.
На рисунке 10.7 изображена упрощенная схема электронной рентгеновской трубки. Катод l представляет собой вольфрамовую спираль, испускающую электроны за счет термоэлектронной эмиссии. Цилиндр 3 фокусирует поток электронов, которые затем соударяются с металлическим электродом (анодом) 2. При этом появляются рентгеновские лучи. Напряжение между анодом и катодом достигает нескольких десятков киловольт. В трубке создается глубокий вакуум; давление газа в ней не превышает 10-5 мм рт. ст.
В мощных рентгеновских трубках анод охлаждается проточной водой, так как при торможении электронов выделяется большое количество теплоты. В полезное излучение превращается лишь около 3% энергии электронов.
Гамма-лучи. По своим свойствам -лучи очень сильно напоминают рентгеновские, но только их проникающая способность гораздо больше, чем у рентгеновских лучей. Это наводило на мысль, что -лучи представляют собой электромагнитные волны. Все сомнения в этом отпали после того, как была обнаружена дифракция -лучей на кристаллах и измерена их длина волны. Она оказалась очень малой — от 10-8 до 10 -11 см.
На шкале электромагнитных волн у-лучи следуют непосредственно за рентгеновскими. Скорость распространения -лучей такая же, как у всех электромагнитных волн, — около 300 000 км/с.
Рентгеновское излучение широко используется в медицине, для научных исследований.
Рентгеновские лучи, как и -излучение — электромагнитные волны с малой длиной волны.