Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Перевірка правдивості статистичних гіпотез про рівність двох генеральних середніх




 

Нехай генеральні сукупності Х і У розподілені нормально, причому їх дисперсії відомі. З незалежних вибірок об’ємом nіm знайдемо середні вибіркові .

Потрібно по вибіркових середніх при заданому рівні значимості a перевірити нульову гіпотезу Н0, яка полягає в тому, що генеральні середні (математичні сподівання) даних сукупностей рівні між собою, тобто Н0: М[X] = М[Y].

Враховуючи, що вибіркові середні є незміщеними оцінками генеральних середніх, тобто , нульову гіпотезу можна записати так: Н0: М[ ] = М[ ], тобто перевірити, що математичне сподівання вибіркових середніх рівні між собою. Якщо гіпотеза Н0 правдива, то різниця між вибірковими середніми незначна.

В ролі критерію перевірки нульової гіпотези приймається випадкова величина

,

.

Критерій Z – нормована нормальна випадкова величина, бо є лінійна комбінація нормальних величин; Z – нормована, бо М (Z) = 0, s(Z) = 1 при справедливості гіпотези Н0.

Критична область будується в залежності від вигляду конкуруючої гіпотези.

Перший випадок. Нульова гіпотеза Н0: М[X] = М[Y], конкуруюча Н1: М[X] ¹ М[Y]. В цьому випадку будують двосторонню критичну область, виходячи з вимоги, що ймовірність попадання критерію в цю область, в припущенні справедливості нульової гіпотези, була рівна прийнятому рівні значимості a.

Найбільша потужність критерію (ймовірність попадання критерію в критичну область при правдивості конкуруючої гіпотези) досягається тоді, коли “ліва” і “права” критичні точки вибрані так, що ймовірність попадання критерію в кожен із двох інтервалів критичної області рівний a/2:

Р(Z < kлів кр) = a/2, Р(Z < kпр кр) = a/2.

 

Оскільки, Z – нормована нормальна величина, а розподіл такої величини симетричний відносно нуля, то критичні точки симетричні відносно нуля, тобто досить знайти праву границю, щоб знайти саму двосторонню критичну область (нехай kпр кр = kкр, kлів кр = - kкр).

Покажемо, як знайти kкр – праву межу двосторонньої критичної області, користуючись функцією Лапласа Ф(z). Відомо, що функція Лапласа визначає ймовірність попадання нормованої нормальної випадкової величини, наприклад, Z в інтервалі (0, z):

 

Р(0 < Z < z) = Ф(z). (1)

 

Так як розподіл Z симетричний відносно нуля, то Р(z Î [0, ¥)) = 0,5, то, якщо розбити цей інтервал kкр на інтервалі [0, kкр) È (kкр, ¥), то по теоремі додавання

 

Р(0 < Z < kкр) + Р (kкр < Z < ¥) = ½ (2)

Звідки Ф(kкр) + a/2 = 1/2

Ф(kкр) = (3)

Висновок І. Для того, щоб при заданому рівні значимості a перевірити нульову гіпотезу Н0: М[X] = М[Y] двох нормальних генеральних сукупностей з відомими дисперсіями при конкуруючій гіпотезі Н1: М[X] ¹ М[Y], потрібно обчислити

і по таблиці функції Лапласа знайти критичну точку рівності

Ф(kкр) = .

Якщо ÷Ксп÷ < kкр – нема підстави відхиляти нульову гіпотезу.

Якщо ÷Ксп÷ > kкр – нульову гіпотезу відхиляють.

Другий випадок. Нульова гіпотеза Н0: М[X] = М[Y], конкуруюча Н1: М[X] > М[Y].

В цьому випадку будують правосторонню критичну область, виходячи з вимоги, щоб ймовірність попадання критерію в цю область в припущенні справедливості нульової гіпотези була рівна прийнятому рівню значимості a:

Р(K > kкр) = a

Користуючись співвідношенням (2) Р(0 < Z < kкр) + Р (Z > kкр) = 1/2, маємо Ф(kкр) + a = 1/2 або Ф(kкр) = .

Висновок 2. Щоб при заданому рівні значимості a перевірити нульову гіпотезу Н0: М[X] = М[Y] при конкуруючій гіпотезі Н1: М[X] > М[Y], потрібно обчислити

і по таблиці функції Лапласа знайти критичну точку з рівності .

Якщо Kсп< kкр – нема підстави відхиляти нульову гіпотезу. Якщо Ксп> kкр – нульова гіпотеза відхиляється.

Третій випадок. Нульова гіпотеза H0: М[X]=M[Y]. Конкуруюча H1: M[X]<M[Y].

В цьому випадку будуть лівосторонню критичну область, виходячи з вимоги, що ймовірність попадання критерію в цю область, в припущенні справедливості нульової гіпотези, була рівна прийнятому рівню значимості:

.

Висновок 3. При конкуруючій гіпотезі M[X]<M[Y] треба обчислити Kсп і спочатку по таблиці функції Лапласа знайти “допоміжну точку” kкр з рівності , а потім покласти . Якщо Kсп>-kкр – немає підстави відхиляти нульову гіпотезу. Якщо Kсп<-kкр – нульову гіпотезу відхиляють.

Приклад 1. По двох вибірках, об’ємами n=40, m=50, взятих з нормальних генеральних сукупностей, знайдено вибіркові середні . Відомі генеральні дисперсії: D [X]=80, D [Y]=90. Потрібно при рівні значимості 0,01 перевірити нульову гіпотезу H0: M[X]=M[Y] при конкуруючій гіпотезі H1: .

Рішення. Знайдемо спостережувальний критерій

.

По умові конкуруючої гіпотези H1: критична область двостороння. Знайдемо праву критичну точку з рівності. По таблиці функції Лапласа (див.2, дод.1) знаходимо kкр=2,58. Так як , то згідно правила 1 нульова гіпотеза відхиляється, тобто генеральні середні різняться істотно.





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 516 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2205 - | 2091 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.007 с.