Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Корректные и некорректные декомпозиции отношений. Теорема Хеза




На Рис. 6. приведены две возможные декомпозиции отношения СЛУЖАЩИЕ_ПРОЕКТЫ

Рис. 6. Две возможные декомпозиции отношения СЛУЖАЩИЕ_ПРОЕКТЫ

Анализ Рис. 6. показывает, что в случае декомпозиции (1) мы не потеряли информацию о служащих – про каждого из них можно узнать имя, размер зарплаты, номер выполняемого проекта и имя руководителя проекта. Вторая декомпозиция не дает возможности получить данные о проекте служащего, поскольку Иванов и Иваненко получают одинаковую зарплату, следовательно, эта декомпозиция приводит к потере информации. Что же привело к тому, что одна декомпозиция является декомпозицией без потерь, а вторая – нет?

Заметим, что при проведении декомпозиции мы использовали операцию взятия проекции. Каждое из отношений СЛУЖ, СЛУ_ПРО и ЗАРП_ПРО является проекцией исходного отношения СЛУЖАЩИЕ_ПРОЕКТЫ. В случае декомпозиции (1) отсутствие потери информации означает, что в результате естественного соединения отношений СЛУЖ и СЛУ_ПРО мы гарантированно получим отношение, заголовок и тело которого совпадают с заголовком и телом отношения СЛУЖАЩИЕ_ПРОЕКТЫ. Следует отметить, что это произойдет для любых допустимых (и согласованных) значений переменных отношений СЛУЖАЩИЕ_ПРОЕКТЫ, СЛУЖ и СЛУ_ПРО, поскольку у всех этих переменных атрибут СЛУ_НОМ является возможным ключом. Однако если выполнить естественное соединение отношений СЛУ и ЗАРП_ПРО, то будет получено отношение, показанное на Рис. 7.

Схема этого отношения, естественно (поскольку соединение – естественное), совпадает со схемой отношения СЛУЖАЩИЕ_ПРОЕКТЫ, но в теле появились лишние кортежи, наличие которых и приводит к утрате исходной информации. Интуитивно понятно, что это происходит потому, что в отношении ЗАРП_ПРО отсутствуют функциональные зависимости СЛУ_ЗАРП ПРО_НОМ и СЛУ_ЗАРП ПРОЕКТ_РУК, но точнее причину потери информации в данном случае мы объясним несколько позже.

Корректность же декомпозиции 1 следует из теоремы Хеза:

Теорема Хеза.

Пусть задано отношение r {A, B, C} (A, B и C, в общем случае, являются составными атрибутами) и выполняется FD A B.

Рис. 7. Результат естественного соединения отношений СЛУЖ и ЗАРП_ПРО

Тогда r = (r PROJECT {A, B}) NATURAL JOIN (r PROJECT {A, C}).

Для иллюстрации общего случая применения теоремы Хеза рассмотрим отношение СЛУЖАЩИЕ_ОТДЕЛЫ_ПРОЕКТЫ {СЛУ_НОМ, СЛУ_ОТД, ПРО_НОМ} (Рис. 8). Атрибут СЛУ_ОТД содержит номера отделов, в которых работают служащие, а ПРО_НОМ – номера проектов, в которых служащие принимают участие. Каждый служащий работает только в одном отделе, т. е. имеется FD СЛУ_НОМ СЛУ_ОТД, но один служащий может участвовать в нескольких проектах.

Рис. 8. Декомпозиция без потерь по теореме Хеза

В отношении СЛУЖАЩИЕ_ОТДЕЛЫ_ПРОЕКТЫ атрибут СЛУ_НОМ не является возможным ключом, но, как показано на Рис. 8, наличия FD СЛУ_НОМ СЛУ_ОТД оказывается достаточно для декомпозиции этого отношения без потерь.





Поделиться с друзьями:


Дата добавления: 2016-03-27; Мы поможем в написании ваших работ!; просмотров: 404 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Чтобы получился студенческий борщ, его нужно варить также как и домашний, только без мяса и развести водой 1:10 © Неизвестно
==> читать все изречения...

2405 - | 2285 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.