.


:




:

































 

 

 

 





Z = Z(X) = Z(x1, x2,...,xn).

, Z, grad Z= i ×Z/x1+ j ×Z/x2+...+ k ×Z/xn.

Z :

grad Z= {Z/x1;Z/x2;...;Z/xn } grad Z= Ñ Z ().

- grad Z= antigrad Z= Z.

- , X0 (grad Z(X0)), Z .

-, X0 (antigrad Z(X0)), Z .

N - , , gradN N.

gradY Z Y, Y .

gradY < 0, Z Y.

gradY > 0, Z Y.

gradY = 0, Z Y.

, , X0 . .

, , .

: , , , . . . , , , e d, .

ji(X)Î[- d, 0] X0, X0Î ji(X).

j 1 (X) < 0, d = 0,0005, X0 =0,000005, X0 = =0,000005Ï[-0,0005; 0 ], X0 Ï j 1 (X). X0 = -0,00005, X0 = = -0,00005 Î [-0,0005; 0 ], X0 Î j 1 (X).

ji(X)Î[- d, 0] ji(X) = 0 d.

: ji(X) £ 0, i = 1 ¸ 3.

. 7.

 

X0 d, . . 7 : X0 Î j 1 (X) X0 Î j 2 (X).


 

:

min Z = f(X) = f(x1, x2,...,xn),

ji (X) £ 0, i = 1 ¸ m,

X ³ 0,

f(X) ,

ji(X) , i = 1 ¸ m.

:

min Z = 1x1+2x2+...+Cn xn - ,

ji(X) £ 0, i = 1 ¸ m,

X(x1, x2,...,xn) ³ 0,

ji(X) , i = 1 ¸ m.

I [8]. X0 , X0Î ji (X), i = 1 ¸ m X0 (X0Î ji (X) = 0, i = 1 ¸ m X0 : -d £ ji (X) £ 0, i = 1 ¸ m, d - ).

II - .

1. ji(X) n ji (X) = 0. . , ji (X) = 0 , d. , X0. , -d £ ji (X) £ 0, i = 1 ¸ m. , X0 ji (X). .

, X0 Ï j1 (X).

X0 Ï j2 (X).

X0 Î j3 (X)Þ X0 Î jn1 (X).

X0 Ï j4 (X).

X0 Î j3 (X) Þ X0 Î jn2 (X).

.

X0 Î jm (X)Þ X0 Î jnk (X)

ji(X) £ 0, i = 1 ¸ m :

jn1 (X) £ 0.

jn2 (X) £ 0.

...............

jnk (X) £ 0.

jni (X) £ 0, i = 1 ¸ k, k £ m.

2. , , , . , , X0, . :

min U = y n+i - .

grad Z = (1,2, ,n) , .

:

:

grad Z×Y £ y n+i

grad jni (X0) ×Y £ y n+i , i = 1 ¸ k,

:

-1£ y 1 £ 1,

-1£ y 2 £ 1,

.

-1£ y n £ 1.

, Y(y 1, y 2, , yn) . Y grad f ×Y ( f ) , . U < 0, Y , . U < 0, Y jni , jni (X) £ 0, i = 1 ¸ k. , Y .

.

min U = y n+i

grad Z = (1,2, ,n)

:

1 y 1+2 y 2 + +n y n £ y n+i

[jn1(X0)/(x1)]×y1+[jn1(X0)/(x2)]×y2+[jn1(X0)/(x3)]×y3+[jn1(X0)/ /(xn)]×yn £ y n+i

................

[jnk(X0)/(x1)]×y1 + [jnk(X0)/(x2)]×y2+[jnk(X0)/(x3)]×y3 + [jnk(X0)/ /(xn)]×yn £ y n+i

:

-1£ y j £ 1, j = 1¸n.

.

yj, j=1¸n yj= yj¢- y j² , yj¢ ³ 0, yj² ³ 0 .

, min U = y* n+i ³ 0, , , X0, , .

3. .

Y [9] . X′ = X0 +t ·Y t, t* , X′ .

ji(X) £ 0, i = 1 ¸ m ti ji(X′)= ji (X0 +t ּY) = 0, i = 1 ¸ m. ji(X′) . : , (), (), , .

, ji(X)= 12+22 - 5 £ 0, X0(1;1) Y(2;1). ji(X)= ji (X0 +t ּY) =(10+t ּ y1)2+(20+t ּ y2)2 -5 £ 0.

ji(X) = (1+tּ2)2 + (1+tּ1)2 - 5 = 1+4t+4t2 +1 + 2t + t2 5 = 5t2 + 6t 3 £ 0.

5t2 + 6t 3 = 0; D = 62 - 4ּ5ּ(-3) = 96; t1 = - 0,6 0,4ּ√ 6; t2 = - 0,6 + 0,4ּ√ 6;

, m t. t* = min {ti}, i=1 ¸ m. X′ = X0 +t ·Y , X0 . 2 II.

III. , .

min Q = x n+1

j1(X)= j1(x1, x2,...,xn) ≤ xn+1

jm(X)= jm(x1, x2,...,xn) ≤ xn+1.

xn+1 , X(x1, x2,...,xn) . , ω. j, X′. . ji(X′) ≤ 0, X′ X0 . ji(X′) > 0, α , ji(X′) ≤ α i. Min Q = α. , X0, α<0.

. .

1. () .

2. . Y. .

3. . Y: X′ = X0 +t ·Y. . 2.





:


: 2015-11-23; !; : 470 |


:

:

- , , .
==> ...

2164 - | 1947 -


© 2015-2024 lektsii.org - -

: 0.029 .