Z = Z(X) = Z(x1, x2,...,xn).
, Z, grad Z= i ×Z/x1+ j ×Z/x2+...+ k ×Z/xn.
Z :
grad Z= {Z/x1;Z/x2;...;Z/xn } grad Z= Ñ Z ().
- grad Z= antigrad Z= -Ñ Z.
- , X0 (grad Z(X0)), Z .
-, X0 (antigrad Z(X0)), Z .
N - , , grad Z× N N.
grad Z× Y Z Y, Y .
grad Z× Y < 0, Z Y.
grad Z× Y > 0, Z Y.
grad Z× Y = 0, Z Y.
, , X0 . .
, , .
: , , , . . . , , , e d, .
ji(X)Î[- d, 0] X0, X0Î ji(X).
j 1 (X) < 0, d = 0,0005, X0 =0,000005, X0 = =0,000005Ï[-0,0005; 0 ], X0 Ï j 1 (X). X0 = -0,00005, X0 = = -0,00005 Î [-0,0005; 0 ], X0 Î j 1 (X).
ji(X)Î[- d, 0] ji(X) = 0 d.
: ji(X) £ 0, i = 1 ¸ 3.
. 7.
X0 d, . . 7 : X0 Î j 1 (X) X0 Î j 2 (X).
:
|
|
min Z = f(X) = f(x1, x2,...,xn),
ji (X) £ 0, i = 1 ¸ m,
X ³ 0,
f(X) ,
ji(X) , i = 1 ¸ m.
:
min Z = 1x1+2x2+...+Cn xn - ,
ji(X) £ 0, i = 1 ¸ m,
X(x1, x2,...,xn) ³ 0,
ji(X) , i = 1 ¸ m.
I [8]. X0 , X0Î ji (X), i = 1 ¸ m X0 (X0Î ji (X) = 0, i = 1 ¸ m X0 : -d £ ji (X) £ 0, i = 1 ¸ m, d - ).
II - .
1. ji(X) n ji (X) = 0. . , ji (X) = 0 , d. , X0. , -d £ ji (X) £ 0, i = 1 ¸ m. , X0 ji (X). .
, X0 Ï j1 (X).
X0 Ï j2 (X).
X0 Î j3 (X)Þ X0 Î jn1 (X).
X0 Ï j4 (X).
X0 Î j3 (X) Þ X0 Î jn2 (X).
.
X0 Î jm (X)Þ X0 Î jnk (X)
ji(X) £ 0, i = 1 ¸ m :
jn1 (X) £ 0.
jn2 (X) £ 0.
...............
jnk (X) £ 0.
jni (X) £ 0, i = 1 ¸ k, k £ m.
2. , , , . , , X0, . :
min U = y n+i - .
grad Z = (1,2, ,n) , .
:
:
grad Z×Y £ y n+i
grad jni (X0) ×Y £ y n+i , i = 1 ¸ k,
:
-1£ y 1 £ 1,
-1£ y 2 £ 1,
.
-1£ y n £ 1.
, Y(y 1, y 2, , yn) . Y grad f ×Y ( f ) , . U < 0, Y , . U < 0, Y jni , jni (X) £ 0, i = 1 ¸ k. , Y .
.
|
|
min U = y n+i
grad Z = (1,2, ,n)
:
1 y 1+2 y 2 + +n y n £ y n+i
[jn1(X0)/(x1)]×y1+[jn1(X0)/(x2)]×y2+[jn1(X0)/(x3)]×y3+[jn1(X0)/ /(xn)]×yn £ y n+i
................
[jnk(X0)/(x1)]×y1 + [jnk(X0)/(x2)]×y2+[jnk(X0)/(x3)]×y3 + [jnk(X0)/ /(xn)]×yn £ y n+i
:
-1£ y j £ 1, j = 1¸n.
.
yj, j=1¸n yj= yj¢- y j² , yj¢ ³ 0, yj² ³ 0 .
, min U = y* n+i ³ 0, , , X0, , .
3. .
Y [9] . X′ = X0 +t ·Y t, t* , X′ .
ji(X) £ 0, i = 1 ¸ m ti ji(X′)= ji (X0 +t ּY) = 0, i = 1 ¸ m. ji(X′) . : , (), (), , .
, ji(X)= 12+22 - 5 £ 0, X0(1;1) Y(2;1). ji(X)= ji (X0 +t ּY) =(10+t ּ y1)2+(20+t ּ y2)2 -5 £ 0.
ji(X) = (1+tּ2)2 + (1+tּ1)2 - 5 = 1+4t+4t2 +1 + 2t + t2 5 = 5t2 + 6t 3 £ 0.
5t2 + 6t 3 = 0; D = 62 - 4ּ5ּ(-3) = 96; t1 = - 0,6 0,4ּ√ 6; t2 = - 0,6 + 0,4ּ√ 6;
, m t. t* = min {ti}, i=1 ¸ m. X′ = X0 +t ·Y , X0 . 2 II.
III. , .
min Q = x n+1
j1(X)= j1(x1, x2,...,xn) ≤ xn+1
jm(X)= jm(x1, x2,...,xn) ≤ xn+1.
xn+1 , X(x1, x2,...,xn) . , ω. j, X′. . ji(X′) ≤ 0, X′ X0 . ji(X′) > 0, α , ji(X′) ≤ α i. Min Q = α. , X0, α<0.
. .
1. () .
2. . Y. .
3. . Y: X′ = X0 +t ·Y. . 2.