Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Кинематика материальной точки




В кинематике точки рассматриваются характеристики движения точки, такие, как скорость и ускорение и методы их определения при различных способах задания движения. Траекторией точки называется геометрическое место ее последовательных положений в пространстве с течением времени относительно рассматриваемой системы отсчета. Форма траектории может быть прямолинейной или криволинейной и зависит от выбранной системы координат.

Движение точки можно изучать, используя любую систему координат. Рассмотрим три способа задания движения: векторный, координатный и естественный.

Векторный способ. Будем рассматривать случай декартовой прямоугольной системы координат. Движение точки относительно рассматриваемой системы отсчета задано, если известен радиус-вектор этой точки как функция времени, т.е.

(1-1)

Векторный способ обычно применяется для теоретического изложения кинематики точки.

Координатный способ.Движение точки можно изучать используя любую систему координат. Рассмотрим случай декартовой прямоугольной системы координат.

Движение точки задано, если известны координаты точки, как непрерывные, дважды дифференцируемые функции времени, т.е.

, , (1-2)

Уравнения движения есть также уравнения траектории точки в параметрической форме. Параметром является время t.

(1-3)

Уравнения траектории в координатной форме получаются из уравнений (1-2) исключением параметра t. Получаются уравнения двух поверхностей , . Пересечение этих поверхностей дает кривую в пространстве – траекторию точки.

Естественный способ задания движения.

При естественном способе задания движения задаются траектория точки и закон движения точки по траектории. Движение точки рассматривается относительно фиксированной системы отсчета.

Для задания закона движения точки по траектории необходимо выбрать на траектории точку О, принимаемую за начало отсчета. Кроме того, необходимо задать начало отсчета времени.

 
 

Рис. 1.3

 

- закон движения точки по траектории.

Функция должна быть непрерывной и дважды дифференцируемой.

От задания движения в декартовых координатах можно перейти к его заданию естественным способом. Закон движения точки по траектории в дифференциальной форме через декартовы координаты выражается в виде

и после интегрирования - в конечной форме

если

Одной из основных характеристик движения точки является ее скорость относительно выбранной системы отсчета.





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 706 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

2205 - | 2091 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.