Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Связи и их реакции, геометрический и аналитический способ сложения сил




В теоретической механике различают свободную материальную точку, свободную систему и свободное твердое тело, а также несво­бодную материальную точку, несвободную систему, несвободное твердое тело.

Если на движение материальной точки, системы или твердого тела не наложены наперед заданные ограниче­ния, то материальная точка, система или твердое тело называются свободными.

В противном случае материальная точка, система или твердое тело называются несвободными. Физические условия, ограничиваю­щие свободу движения указанных материальных объектов, назы­ваются связями.

В статике встречаются простейшие связи, осуществляемые раз­
личными твердыми или гибкими телами.

Сила, с которой связь действует на рассматриваемую точку, систему или твердое тело, называется реакцией связи.

Виды связей и их реакции.

Связью может быть нить, шнур, веревка, цепь, трос и т. д. В теоретической механике принимают, что такие связи являются невесомыми, гибкими и
нерастяжимыми.
Реакции этих связей направлены соответственно: по нити, веревке и т. д. В отличие от стержня, здесь Рис. 4 известна не только линия действия реакции, но и ее направле­ние. Реакции нити, веревки и других гибких связей будем обозначать буквой Т.

Однако существуют такие связи, линии действия которых
наперед нельзя указать. К числу таких связей относится, напри­мер, неподвижный цилиндрический шарнир.

Он состоит из неподвижного цилиндрического болта (пальца), на который надевается втулка (рис.), имеющая цилиндрическое отверстие с диаметром, немного превышающим диаметр болта. Если тело скрепить с втулкой, то оно сможет только вращаться вокруг оси шарнира. В идеальном шарнире, в котором пренебрегают трением между поверх­ностями пальца и втулки, возникает только препятствие для пере­мещения втулки в направлении, перпендикулярном к поверхностям пальца и втулки. Поэтому реакция в идеальном шарнире направлена по нормали, т. е. по радиусу болта. В зависимости от действу­ющих сил втулка может прижиматься к болту в любой точке. Поэтому направление реакции неподвижного цилиндрического шарни­ра наперед указать нельзя. Об этой реакции известно только то, что она расположена в плоскости, перпендикулярной к оси, шарнира. Схематически неподвижный шарнир изображают двумя стержнями, соединенными общим шарниром. При решении задач реакцию шарнира определяют аналитически, раскладывая ее по направлениям координатных осей. Величину проекций реакции определяют из уравнений равновесия. Аналогично поступают и в других случаях, когда направление реакции какой-то связи наперед указать нельзя.

Система сил, линии действия которых пересекаются в одной точ­ке, называется системой сходящихся сил.

Система сходящихся сил либо приводится к равнодействующей, либо находится в равновесии.

Теорема. Равнодействующая системы сходящихся сил равна век­торной сумме этих сил.

Действительно, пусть к абсолютно твердому телу приложена система сил F1, F2,..., Fn, линии действия которых пересекаются в некоторой точке О (рис.). Мы могли бы складывать последова­тельно эти силы по аксиоме о параллелограмме сил. Однако этот путь очень длинен. Пользуясь правилом геометрического сложения векторов, сразу построим многоугольник сил F1, F2,..., Fn, замыкающая сторона которого и будет равнодействующей силой R.

Изложенный способ определения равнодействующей является геометрическим. Однако равнодействующую силу R можно определить и аналитически, по проекциям на неподвижные оси декартовой системы координат, выбрав за начало координат точку О пересечения линий действия системы сходящихся сил.





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 1659 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинайте делать все, что вы можете сделать – и даже то, о чем можете хотя бы мечтать. В смелости гений, сила и магия. © Иоганн Вольфганг Гете
==> читать все изречения...

2282 - | 2063 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.006 с.