Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


МКЗ относится к основным исследованиям, проводится во всех поисковых и разведочных скважинах, в открытом стволе, в интервалах детальных исследований, совместно с комплексом БКЗ




МКЗ самостоятельно решает следующие геофизические задачи:

- определение УЭС промывочной жидкости (по интервалам каверн) как подтверждающая информация при интерпретации комплекса БКЗ;

- определение кажущегося сопротивления исследуемой среды каждой установкой в объеме всего радиуса исследования в диапазоне значений до 200 Ом.м.

МКЗ применим при решении следующих геологических задач:

- при наличии глинистой корки и радиального градиента сопротивлений положительными приращениями на диаграммах МКЗ выделяются коллекторы с межгранулярной средней и высокой пористостью, при условии, что сопротивления, измеряемые микрозондами, превышают не более чем в 5 раз значения УЭС промывочной жидкости; положительные приращения на диаграммах относятся к прямым качественным признакам проникновения фильтрата промывочной жидкости в пласты и подтверждают движение флюида в пласты, образование глинистых корок и радиальных градиентов сопротивлений;

- определение эффективной мощности коллекторов с достоверным выделением отдельных проницаемых прослоев толщиной от 0,4 м и выше, при разрешающей способности МКЗ 02 см;

- выделение плотных непроницаемых прослоев, в том числе в среде коллекторов;

- выделение размываемых глин-покрышек, дающих значительные каверны;

- выделение зон частого чередования участков разреза тонкослоистого строения с ухудшенными коллекторными свойствами, зонами глинизации или представленные неколлекторами;

- при незначительном проникновении или его отсутствии по данным МКЗ возможно разделение газонасыщенных и водонасыщенных участков пласта (например, сеноманские массивные залежи газа севера Тюменской области);

- данные МКЗ используются при привязке керна к глубине;

- данные МКЗ используются как вспомогательный материал при детальных литостратиграфических расчленениях и других геологических построениях, при детальном изучении строения и свойств объекта.

Физические основы метода.

Метод микрозондирования заключается в детальном исследовании кажущегося сопротивления прискважинной части разреза зондами очень малой длины. В качестве зондовой установки служит резиновый “башмак”, на котором установлены три точечных электрода на расстоянии 2.5 см друг от друга. Они образуют два зонда: микроградиентзонд (МГЗ) A0.025M0.025N и микропотенциалзонд (МПЗ) A0.05M, у которого электродом N служит корпус прибора (см. рис.27).

Рис.27. Схема зондовой установки МКЗ

 

Радиус исследования МГЗ приблизительно равен 3-5 см, а глубина исследования МПЗ в 2.0-2.5 раза больше, т.е. составляет 10-12см. Поскольку радиус исследования МГЗ меньше, чем МПЗ, то на его показания оказывают большее влияние промывочная жидкость и глинистая корка, а на показания МПЗ - промытая зона скважины. Т.к. в наших условиях удельное сопротивление промытой зоны больше сопротивления глинистой корки, то против коллекторов показания МПЗ превышают показания МГЗ, т.е. пласты-коллекторы характеризуются положительными приращениями кажущегося сопротивления.

Оценка качества.

Качество материала микрометодов контролируется по следующим признакам:

- допустимая погрешность измерений МКЗ, определяемая по данным контрольной записи - не более 10%;

- расхождение стандарт-сигналов, фиксируемых в начале и конце замера - до 5%;

- расхождение показаний МПЗ и МГЗ против плотных глин не более 30% (значение кажущегося сопротивления против таких глин составляет примерно 8-10 Ом*м);

- расхождение показаний МПЗ, МГЗ в больших кавернах друг от друга и от удельного сопротивления бурового раствора не более 20% (см. рис.28);

Рис.28. Пример записи диаграммы МКЗ

Пример зарегистрированных данных аппаратурой МК приведен на рис.29.

Рис.29. Пример записи диаграммы МКЗ

Таким образом, при оперативной оценке качества МК основным критерием качественного материала является: превышение показаний МПЗ над показаниями МГЗ против пластов-коллекторов и близкие показания в кавернах.

Методические приемы, повышающие геологическую эффективность МКЗ:

- диаграммы должны быть высокого качества;

- обязательной является одновременная запись кривых обоих микрозондов;

- в каждом разведочном районе по результатам испытания объектов должны быть уточнены верхние пределы абсолютных значений сопротивлений на диаграммах микрозондов, чтобы положительные приращения между ними могли использоваться как прямой качественный признак проникновения и коллектора;

- измерения микрозондами необходимо проводить в условиях наиболее вероятного наличия глинистых корок;

- масштаб кривых 1:1 обоих микрозондов должен быть 2,5 Ом.м/см при соотношении вспомогательных кривых как 1:2:5, т.е. 5 и 12,5 Ом.м/см соответственно;

- при УЭС промывочной жидкости менее 0,2 Ом.м на показаниях МКЗ резко уменьшается дифференциация и положительные приращения могут отсутствовать.

Микрозондирование производится следующей аппаратурой:

- МК-УЦ;

- МК-М (см. МБК).

15. Термометрия

При термическом (или геотермическом) каротаже вдоль ствола скважины непрерывно регистрируется температура среды. Для термических исследований чаще всего применяют электрические термометры (или термометры сопротивлений) разных марок и регистрирующее устройство каротажной станции.

На температуры в скважинах искажающее влияние могут оказывать разные причины: изменение диаметра скважины, потоки воздуха или буровой жидкости, нагрев породы после бурения и др. Эти факторы необходимо учитывать или исключать при выявлении температурных аномалий.

Термический каротаж подразделяется на методы естественных (МЕТ) и искусственных (МИТ) тепловых полей. Кривая изменения естественных температур пород в скважине и рассчитанный по ней геотермический градиент каждого i-го пласта зависят от теплового потока и теплопроводности слагающих пород. В случае горизонтального залегания пород тепловой поток по стволу скважины остается практически постоянным, и по графику геотермического градиента легко выделить породы с разной теплопроводностью.

В разведочных скважинах термометрия относится к дополнительным методам и проводится при значительных вариациях геотермического градиента по территории месторождения, например, из-за блокового строения разреза.

Диаграмма геотермического градиента регистрируется в масштабе 0,25оС/см с соотношением последующих масштабов как 1:2.





Поделиться с друзьями:


Дата добавления: 2015-10-27; Мы поможем в написании ваших работ!; просмотров: 916 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Жизнь - это то, что с тобой происходит, пока ты строишь планы. © Джон Леннон
==> читать все изречения...

2265 - | 2038 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.