МКЗ самостоятельно решает следующие геофизические задачи:
- определение УЭС промывочной жидкости (по интервалам каверн) как подтверждающая информация при интерпретации комплекса БКЗ;
- определение кажущегося сопротивления исследуемой среды каждой установкой в объеме всего радиуса исследования в диапазоне значений до 200 Ом.м.
МКЗ применим при решении следующих геологических задач:
- при наличии глинистой корки и радиального градиента сопротивлений положительными приращениями на диаграммах МКЗ выделяются коллекторы с межгранулярной средней и высокой пористостью, при условии, что сопротивления, измеряемые микрозондами, превышают не более чем в 5 раз значения УЭС промывочной жидкости; положительные приращения на диаграммах относятся к прямым качественным признакам проникновения фильтрата промывочной жидкости в пласты и подтверждают движение флюида в пласты, образование глинистых корок и радиальных градиентов сопротивлений;
- определение эффективной мощности коллекторов с достоверным выделением отдельных проницаемых прослоев толщиной от 0,4 м и выше, при разрешающей способности МКЗ 02 см;
- выделение плотных непроницаемых прослоев, в том числе в среде коллекторов;
- выделение размываемых глин-покрышек, дающих значительные каверны;
- выделение зон частого чередования участков разреза тонкослоистого строения с ухудшенными коллекторными свойствами, зонами глинизации или представленные неколлекторами;
- при незначительном проникновении или его отсутствии по данным МКЗ возможно разделение газонасыщенных и водонасыщенных участков пласта (например, сеноманские массивные залежи газа севера Тюменской области);
- данные МКЗ используются при привязке керна к глубине;
- данные МКЗ используются как вспомогательный материал при детальных литостратиграфических расчленениях и других геологических построениях, при детальном изучении строения и свойств объекта.
Физические основы метода.
Метод микрозондирования заключается в детальном исследовании кажущегося сопротивления прискважинной части разреза зондами очень малой длины. В качестве зондовой установки служит резиновый “башмак”, на котором установлены три точечных электрода на расстоянии 2.5 см друг от друга. Они образуют два зонда: микроградиентзонд (МГЗ) A0.025M0.025N и микропотенциалзонд (МПЗ) A0.05M, у которого электродом N служит корпус прибора (см. рис.27).
Рис.27. Схема зондовой установки МКЗ
Радиус исследования МГЗ приблизительно равен 3-5 см, а глубина исследования МПЗ в 2.0-2.5 раза больше, т.е. составляет 10-12см. Поскольку радиус исследования МГЗ меньше, чем МПЗ, то на его показания оказывают большее влияние промывочная жидкость и глинистая корка, а на показания МПЗ - промытая зона скважины. Т.к. в наших условиях удельное сопротивление промытой зоны больше сопротивления глинистой корки, то против коллекторов показания МПЗ превышают показания МГЗ, т.е. пласты-коллекторы характеризуются положительными приращениями кажущегося сопротивления.
Оценка качества.
Качество материала микрометодов контролируется по следующим признакам:
- допустимая погрешность измерений МКЗ, определяемая по данным контрольной записи - не более 10%;
- расхождение стандарт-сигналов, фиксируемых в начале и конце замера - до 5%;
- расхождение показаний МПЗ и МГЗ против плотных глин не более 30% (значение кажущегося сопротивления против таких глин составляет примерно 8-10 Ом*м);
- расхождение показаний МПЗ, МГЗ в больших кавернах друг от друга и от удельного сопротивления бурового раствора не более 20% (см. рис.28);
Рис.28. Пример записи диаграммы МКЗ
Пример зарегистрированных данных аппаратурой МК приведен на рис.29.
Рис.29. Пример записи диаграммы МКЗ
Таким образом, при оперативной оценке качества МК основным критерием качественного материала является: превышение показаний МПЗ над показаниями МГЗ против пластов-коллекторов и близкие показания в кавернах.
Методические приемы, повышающие геологическую эффективность МКЗ:
- диаграммы должны быть высокого качества;
- обязательной является одновременная запись кривых обоих микрозондов;
- в каждом разведочном районе по результатам испытания объектов должны быть уточнены верхние пределы абсолютных значений сопротивлений на диаграммах микрозондов, чтобы положительные приращения между ними могли использоваться как прямой качественный признак проникновения и коллектора;
- измерения микрозондами необходимо проводить в условиях наиболее вероятного наличия глинистых корок;
- масштаб кривых 1:1 обоих микрозондов должен быть 2,5 Ом.м/см при соотношении вспомогательных кривых как 1:2:5, т.е. 5 и 12,5 Ом.м/см соответственно;
- при УЭС промывочной жидкости менее 0,2 Ом.м на показаниях МКЗ резко уменьшается дифференциация и положительные приращения могут отсутствовать.
Микрозондирование производится следующей аппаратурой:
- МК-УЦ;
- МК-М (см. МБК).
15. Термометрия
При термическом (или геотермическом) каротаже вдоль ствола скважины непрерывно регистрируется температура среды. Для термических исследований чаще всего применяют электрические термометры (или термометры сопротивлений) разных марок и регистрирующее устройство каротажной станции.
На температуры в скважинах искажающее влияние могут оказывать разные причины: изменение диаметра скважины, потоки воздуха или буровой жидкости, нагрев породы после бурения и др. Эти факторы необходимо учитывать или исключать при выявлении температурных аномалий.
Термический каротаж подразделяется на методы естественных (МЕТ) и искусственных (МИТ) тепловых полей. Кривая изменения естественных температур пород в скважине и рассчитанный по ней геотермический градиент каждого i-го пласта зависят от теплового потока и теплопроводности слагающих пород. В случае горизонтального залегания пород тепловой поток по стволу скважины остается практически постоянным, и по графику геотермического градиента легко выделить породы с разной теплопроводностью.
В разведочных скважинах термометрия относится к дополнительным методам и проводится при значительных вариациях геотермического градиента по территории месторождения, например, из-за блокового строения разреза.
Диаграмма геотермического градиента регистрируется в масштабе 0,25оС/см с соотношением последующих масштабов как 1:2.