Лекции.Орг
 

Категории:


Теория отведений Эйнтховена: Сердце человека – это мощная мышца. При синхронном возбуждении волокон сердечной мышцы...


Электрогитара Fender: Эти статьи описывают создание цельнокорпусной, частично-полой и полой электрогитар...


Архитектурное бюро: Доминантами формообразования служат здесь в равной мере как контекст...

Інтегрування диференціальних рівнянь руху точки



Розглянемо рішення другої задачі динаміки в декартовій системі координат. Оскільки в загальному випадку сила може залежати від часу, від координат точки та від швидкості, то диференціальні рівняння руху мають вигляд:

 

 

Визначення закону руху в цьому випадку зводиться до інтегрування системи трьох диференціальних рівнянь другого порядку, в яких невідомими функціями с координати x, y, z точки, що рухається; а аргументом – час t.

При інтегруванні кожного рівняння системи (2.13) з'являються дві сталі інтегрування, а для випадку трьох основних диференціальних рівнянь маємо шість сталих С1, С2, С3, С4, С5, С6.

Кожна з координат x, y, z точки, що рухається, після інтегрування системи, залежить від часу t та всіх шести постійних інтегрування:

 

;

;

.

 

Якщо сталим інтегрування надати різні числові значення, то можна отримати сукупність різних значень х, у, z.

Таким чином, надані сили не визначають конкретного руху точки, а виділяють цілий клас рухів, що характеризуються шістьма довільними сталими. Для того, щоб отримати рішення конкретної задачі, необхідно задати ще додаткові умови, що характеризують дану задачу. В якості таких умов задають звичайно початкові умови руху.

Вивчення будь-якого руху починаєтся з деякого визначеного моменту часу, що називається початковим моментом часу. Від цього моменту ми будемо відраховувати час руху, вважаючи, що в початковий момент t = 0. Початковий стан точки будемо визначати її радіус-вектором , та швидкістю при t = 0.

В декартових координатах необхідно задавати відповідні проекції при t = 0:

 

x=x0 ; y=y0 ; z=z0;

.

Ці відношення називаються початковими умовами руху.

З цих рівнянь визначають сталі інтегрування в залежності від початкових координат точки та проекцій початкової швидкості. Якщо підставити отримані значення сталих інтегрування, то отримаємо частинні рішення рівнянь руху:

 

,

,

.

 

У випадку руху точки в площині, наприклад ХОY, маємо два диференціальних рівняння руху. Рішення цих рівнянь містить вже чотири сталих інтегрування, котрі визначаються з початкових умов: приt = 0,

 

x=x0 ; y=y0 ;

Якщо точка виконує прямолінійний рух, наприклад, в напрямку осі Ох , то маємо тільки одне диференціальне рівняння, в рішення якого входять тільки дві сталі інтегрування. Для їх визначення необхідно задати такі початкові умови.

При t = 0; x=x0 ; .

Необхідно зауважити, що введення початкової швидкості точки враховує вплив на її рух тих сил, які діяли на точку до початкового моменту часу.

 





Дата добавления: 2015-11-05; просмотров: 397 | Нарушение авторских прав


Рекомендуемый контект:


Похожая информация:

  1. C точки зpения особенностей стpуктуpы источников, юpидической
  2. I этап. Определение анилиновой точки
  3. II. Динамика вращательного движения материальной точки (твердого тела) (задача 2)
  4. III. Оборот переменного капитала с общественной точки зрения
  5. Алгебраїчний спосіб розрахунку точки беззбитковості
  6. Александр Лоуэн ПРЕДАТЕЛЬСТВО ТЕЛА. вания. Они незначительны с точки зрения функциониро­вания
  7. Александр Лоуэн ПРЕДАТЕЛЬСТВО ТЕЛА. Сандор Радо (Sandor Rado) рассматривает шизо­идную личность с точки зрения физиологии.10 Согласно Радо
  8. Аналіз впливу факторів на зміну точки беззбитковості та запасу міцності
  9. Аналогичным образом находим, выставляем и фиксируем на правом луче другие опорные точки голограммы: через сутки, неделю, месяц, год, девять лет
  10. Билет 6. РП: источники, система, редакции. Точки зрения по поводу происхождения РП
  11. Болезни, инфекции с радиофизической точки зрения
  12. В балансе основных фондов по полной стоимости основные фонды рассматриваются с точки зрения


Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.002 с.