Лекции.Орг
 

Категории:


Электрогитара Fender: Эти статьи описывают создание цельнокорпусной, частично-полой и полой электрогитар...


ОБНОВЛЕНИЕ ЗЕМЛИ: Прошло более трех лет с тех пор, как Совет Министров СССР и Центральный Комитет ВКП...


Макетные упражнения: Макет выполняется в масштабе 1:50, 1:100, 1:200 на подрамнике...

III. ТЕПЛОЕМКОСТЬ И ВНУТРЕННЯЯ ЭНЕРГИЯ ГАЗА

ОБЩИЕ УКАЗАНИЯ К РЕШЕНИЮ ЗАДАЧ

1. Указать основные законы и формулы, на которых базируется решение, разъяснить буквенные обозначения формул. Если при решении задач применяется формула, полученная для частного случая, не выражающая какой-нибудь физический закон, или не являющаяся определением какой-нибудь физической величины, то ее следует вывести.

2. Дать чертеж, поясняющий содержание задачи (в тех случаях, когда это возможно).

3. Сопровождать решение задачи краткими, но исчерпывающими пояснениями.

4. Получить решение задачи в общем виде.

5. Подставить в правую часть полученной рабочей формулы вместо символов величин обозначения единиц, произвести с ними необходимые действия и убедиться в том, что полученная при этом единица соответствует искомой величине.

6. Подставить в рабочую формулу числовые значения величин, выраженные в единицах одной системы.

7. Произвести вычисление величин, подставленных в формулу, руководствуясь правилами приближенных вычислений, записать в ответе числовое значение и сокращенное наименование единицы искомой величины.

8. Оценить, где это целесообразно, правдоподобность численного ответа.

 

КРИТЕРИИ ОЦЕНИВАНИЯ ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

В каждом модуле студент должен защитить 4 задачи. Одна задача оценивается в 25 баллов.

22 - 25 баллов Задача решена верно. В оформлении присутствует дано, найти, чертеж. Указаны основные законы и формулы, на которых базируется решение, разъяснены буквенные обозначения в формулах, получена расчетная формула. Проведена проверка единиц измерения. Студент отвечает на вопросы по решению задачи.
18 - 21 баллов В решении отсутствуют разъяснения обозначений, нет проверки единиц измерения, при вычислении допущены арифметические ошибки, которые ставят под сомнение правдоподобность численного ответа. Студент не всегда поясняет ход решения.
14 - 17 баллов В решении имеются недочеты, нет чертежа, нарушена логика решения задачи. Студент затрудняется отвечать на отдельные вопросы. Верно решенная задача, сданная повторно (в первый раз решение было не верно).
10 - 13 баллов В решении присутствуют элементы верного решения, но при выводе расчетной формулы допущены ошибки. При решении используется "готовая" формула.
7 - 9 баллов Задача решена правильно, но студент не может пояснить ход решения задачи – очевидно, что решение задачи – плод чужого труда. Правильно решеннаязадача без «защиты».

ТЕМЫ ЗАДАЧ

I. ГАЗОВЫЕ ЗАКОНЫ (графическая)

II. ГАЗОВЫЕ ЗАКОНЫ (расчетная)

III. ТЕПЛОЕМКОСТЬ И ВНУТРЕННЯЯ ЭНЕРГИЯ ГАЗА

IV. СТАТИСТИКА

V. ТЕРМОДИНАМИКА

VI. КПД ТЕПЛОВЫХ МАШИН


МОЛЕКУЛЯРНАЯ ФИЗИКА. ТЕРМОДИНАМИКА

I. ГАЗОВЫЕ ЗАКОНЫ

(графическая задача)

  1) Построить данный цикл на PT-, VT- диаграммах   2) Построить данный цикл на PT-, VT- диаграммах  
3) Построить данный цикл на PT-, VT- диаграммах   4) Построить данный цикл на PT-, VT- диаграммах  
5) Построить данный цикл на PT-, VT- диаграммах   6) Построить данный цикл на PT-, VT- диаграммах  
7) Построить данный цикл на PT-, VT- диаграммах   8) Построить данный цикл на PT-, VT- диаграммах  
9) Построить данный цикл на PV-, VT- диаграммах   10) Построить данный цикл на PV-, VT- диаграммах
11) Построить данный цикл на PV-, VT- диаграммах 12) Построить данный цикл на PV-, VT- диаграммах  
13) Построить данный цикл на PV-, VT- диаграммах   14) Построить данный цикл на PV-, VT- диаграммах  
  15) Построить данный цикл на PV-, VT- диаграммах   16) Построить данный цикл на PV-, VT- диаграммах
17) Построить данный цикл на PV-, VT- диаграммах     18) Построить данный цикл на PV-, PT- диаграммах
19) Построить данный цикл на PV-, PT- диаграммах 20) Построить данный цикл на PV-, PT- диаграммах  
21) Построить данный цикл на PV-, PT- диаграммах   22) Построить данный цикл на PV-, PT- диаграммах  
23) Построить данный цикл на PV-, PT- диаграммах     24) Построить данный цикл на PV-, PT- диаграммах
25) Построить данный цикл на PV-, PT- диаграммах 26) Построить данный цикл на PV-, PT- диаграммах

II. ГАЗОВЫЕ ЗАКОНЫ

2.1. Баллон объемом 20 литров заполнен азотом при температуре 400 К. Когда часть газа израсходовали, давление в баллоне понизилось на 200 кПа. Определить массу израсходованного азота. Процесс считать изотермическим.

2.2. В баллоне объемом 15 литров находится аргон под давлением 600 кПа и температуре 300 К. Когда из баллона было взято некоторое количество газа, давление в баллоне понизилось до 400 кПа, а температура установилась 260 К. Определить массу аргона, взятого из баллона.

2.3. Вычислить плотность азота, находящегося в баллоне под давлением 2 МПа и имеющего температуру 400 К.

2.4. Определить плотность смеси 4 г гелия и 32 г кислорода при температуре 300 К и давлении 100 кПа.

2.5. В сосуде объемом 40 литров находится кислород при температуре 300 К. Когда часть газа израсходовали, давление в баллоне понизилось на 100 кПа. Определить массу израсходованного кислорода. Процесс считать изотермическим.

2.6. Один баллон объемом 10 л содержит кислород под давлением 1,5 МПа, а другой баллон объемом 22 л содержит азот под давлением 0,6 МПа. Когда баллоны соединили, оба газа смешались, образовав однородную смесь. Найти парциальные давления обоих газов в смеси и полное давление смеси.

2.7. Смесь водорода и азота общей массой 290 г при температуре 600 К и давлении 2,46 МПа занимает объем 30 л. Определить массу водорода и массу азота.

2.8. В баллоне объемом 22,4 л находится водород при нормальных условиях. После того как в баллон было дополнительно введено некоторое количество гелия, давление в баллоне возросло до 0,25 МПа, а температура не изменилась. Определить массу гелия, введенного в баллон.

2.9. Смесь состоит из водорода с массовой долей 1/9 и кислорода с массовой долей 8/9. Найти плотность этой смеси при температуре 300 К и давлении 0,2 МПа.

2.10. Смесь кислорода и азота находится в сосуде под давлением 1,2 МПа. Определить парциальные давления газов, если массовая доля кислорода в смеси равна 20%.

2.11. Смесь азота с массовой долей 87,5% и водорода с массовой долей 12,5% находится в сосуде объемом 20 л при температуре 560 К. Определить давление смеси, если масса смеси равна 8 г.

2.12. Манометр на баллоне со сжатым газом при температуре 291 К показывает давление 8,4 МПа. Какое давление он будет показывать, если температура понизится до 250 К? Изменением емкости баллона вследствие охлаждения пренебречь.

2.13. Газ при давлении 99 кПа и при температуре 293 К имеет объем 164 см3. Каков объем той же массы газа при нормальных условиях?

2.14. Определить удельный объем азота при температуре 300 К и давлении 49 кПа.

2.15. Из баллона со сжатым водородом емкостью 10 л вследствие неисправности вентиля утекает газ. При температуре 280 К манометр показывал 490 кПа. Через некоторое время при температуре 290 К манометр показал такое же давление. Сколько утекло газа?

2.16. По газопроводной трубе идет углекислый газ при давлении 390 кПа и температуре 280 К. Какова скорость движения газа в трубе, если за 10 мин. протекает 2 кг углекислого газа и если площадь сечения канала трубы 5 см2?

2.17. Предположим, что температура воздуха в атмосфере зависит от высоты таким образом, что плотность воздуха по всей толще атмосферы одинакова. На каком расстоянии по вертикали разность температур равна 1 К?

2.18. В вертикальном закрытом сверху и снизу цилиндре находится движущийся с ничтожным трением поршень. Над и под поршнем находятся одинаковые массы одного и того же газа при температуре 300 К. Вес поршня уравновешивается разностью сил давлений газа, если объем нижней части цилиндра в 3 раза меньше объема верхней части. Каково будет соотношение объемов, если температура повысится до 400 К?

2.19. Три баллона емкостью 3, 7 и 5 л наполнены соответственно кислородом (200 кПа), азотом (300 кПа) и углекислым газом (60 кПа) при одной и той же температуре. Баллоны соединяют между собой, причем образуется смесь той же температуры. Каково давление смеси?

2.20. Определить молярную массу газа, свойства которого соответствуют свойствам смеси 160 г кислорода и 120 г азота.

2.21. Определить плотность смеси 4 г водорода и 32 г кислорода при температуре 280 К и давлении 89 кПа.

2.22. Топочный газ имеет следующий состав: СО2 – 21,4%, Н2О – 6,8%, N2 – 71,8%. Определить удельный объем такого газа при давлении 100 кПа и температуре 500 К.

2.23. Смесь азота с массовой долей 70% и водорода с массовой долей 30% находится в сосуде объемом 100 л при температуре 500 К. Определить давление смеси, если масса смеси равна 100 г.

2.24. В баллоне вместимостью V=25 л находится водород при температуре T=290 K. После того, как часть водорода израсходовали, давление в баллоне понизилось на Dp=0,4 МПа. Определить массу m израсходованного газа.

2.25. Два сосуда одинакового объема содержат кислород. В одном сосуде давление 2 МПа и температура 800 К, в другом давление 2,5 МПа и температура 200 К. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры 200 К. Определить установившееся в сосудах давление.

2.26. 6 г углекислого газа (СО2) и 5 г закиси азота (N2O) заполняют сосуд объемом 2×10-3 м. Каково общее давление в сосуде при температуре 127°С ?

III. ТЕПЛОЕМКОСТЬ И ВНУТРЕННЯЯ ЭНЕРГИЯ ГАЗА

3.1. В закрытом сосуде смесь азота массой m1=56 г и кислорода массой m2=64 г. Определить изменение внутренней энергии этой смеси, если ее охладили на 20°C.

3.2. Кислород массой 1 кг находится при температуре 320 К. Определить: 1) внутреннюю энергию молекул кислорода; 2) среднюю кинетическую энергию вращательного движения молекул кислорода. Газ считать идеальным.

3.3. Найти показатель адиабаты для смеси газов, содержащей гелий массой 8 г и кислород массой 2 г.

3.4. Определить внутреннюю энергию водорода, а также среднюю кинетическую энергию молекулы этого газа при температуре 300 К, если количество вещества этого газа равно 0,5 моль.

3.5. В сосуде вместимостью 6 л находится при нормальных условиях двухатомный газ. Определить удельную теплоемкость cv этого газа при постоянном объеме.

3.6. Вычислить удельную теплоемкость воздуха cp, считая в его составе 20% кислорода и 80% азота.

3.7. 2 киломоля аргона нагревают при изобарном процессе на 57°C. Определить изменение внутренней энергии газа.

3.8. Одноатомный газ при нормальных условиях занимает объем V=5 л. Вычислить теплоемкость cv этого газа при постоянном объеме.

3.9. Определить удельную теплоемкость cv смеси газов, содержащей V1 =5 л водорода и V2 =3 л гелия. Газы находятся при одинаковых условиях.

3.10. Определить удельную теплоемкость cp смеси кислорода и азота, если количество вещества n1 первого компонента равно 2 моль, а количество вещества n2 второго равно 4 моль.

3.11. В баллоне находятся аргон и азот. Определить удельную теплоемкость cv смеси этих газов, если массовые доли аргона (w1) и азота (w2) одинаковы и равны w=0,5. (Массовой долей компонента в смеси называется безразмерная величина, равная отношению массы компонента к массе смеси).

3.12. Смесь газов состоит из хлора и криптона, взятых при одинаковых условиях и в равных объемах. Определить удельную теплоемкость cp смеси.

3.13. Определить удельную теплоемкость cv смеси ксенона и кислорода, если количества вещества газов в смеси одинаковы и равны n.

3.14. Найти показатель адиабаты для смеси газов, содержащей гелий массой 6 г и водород массой 4 г.

3.15. Смесь газов состоит из аргона и азота, взятых при одинаковых условиях и в одинаковых объемах. Определить показатель адиабаты такой смеси.

3.16. Определить удельную теплоемкость cр смеси газов, содержащей V1 =10 л водорода и V2 =5 л гелия. Газы находятся при одинаковых условиях.

3.17. Найти показатель адиабаты для смеси газов, содержащей азот массой 8 г и кислород массой 6 г.

3.18. Найти показатель адиабаты смеси водорода и неона, если массовые доли обоих газов в смеси одинаковы и равны 0,5. (Массовой долей компонента в смеси называется безразмерная величина, равная отношению массы компонента к массе смеси).

3.19. На нагревание кислорода массой 160 г на DT=12 К было затрачено количество теплоты 1,76 кДж. Как протекал процесс: при постоянном объеме или постоянном давлении?

3.20. Определить удельную теплоемкость cv смеси углекислого газа массой 10 г и гелия массой 4 г.

3.21. При адиабатном сжатии газа его объем уменьшился в n=10 раз, а давление увеличилось в k=21,4 раза. Определить отношение Cp/Cv теплоемкостей газов.

3.22. Для некоторого двухатомного газа удельная теплоемкость при постоянном давлении равна 3,5 кал/(г×С). Чему равна молярная масса этого газа?

3.23. Чему равны удельные теплоемкости сv и сp некоторого двухатомного газа, если плотность этого газа при нормальных условиях равна 1,43 кг/м3?

3.24. Найти удельные теплоемкости сv и сp некоторого газа, если известно, что молярная масса этого газа равна m=0,03 кг/моль и отношение Cp/Cv=1,4.

3.25. Найти удельную теплоемкость при постоянном давлении газовой смеси, состоящей из 3 кмоль аргона и 2 кмоль азота.

3.26. Определить отношение Cp/Cv теплоемкостей для газовой смеси, состоящей из 8 г гелия и 16 г водорода.

IV. СТАТИСТИКА

4.1. Определить среднюю длину свободного пробега молекул углекислого газа при температуре 100°С и давлении 0,1 мм рт. ст. Диаметр молекулы углекислого газа принять равным 3,2×10-8 см.

4.2. Найти число столкновений в 1 сек молекул углекислого газа при температуре 100°С, если средняя длина свободного пробега при этих условиях равна 8,7×10-2 см.

4.3. При температуре 0°С и некотором давлении средняя длина свободного пробега молекул кислорода равна 9,2×10-6 см. Чему будет равно число столкновений в 1 сек молекул кислорода, если произвести разрежение в сосуде до 0,01 первоначального давления? Температура остается постоянной.

4.4. Найти число столкновений в 1 сек молекул некоторого газа, если средняя длина свободного пробега при этих условиях равна 7×10-4 см и средняя квадратичная скорость 500 м/сек.

4.5. Определить среднюю длину свободного пробега молекул гелия при температуре 100°С и давлении 760 мм. рт. ст., если при этих условиях коэффициент внутреннего трения для него равен 1,3×10-4 Па×c.

4.6. Определить среднюю длину свободного пробега молекул гелия, если плотность гелия 2,1×10-2 кг/м3.

4.7. При некоторых условиях средняя длина свободного пробега молекул газа равна 160 нм и средняя арифметическая скорость его молекул равна 1,95 км/с. Чему будет равно среднее число столкновений в 1 сек молекул этого газа, если при той же температуре давление уменьшить в 1,27 раз?

4.8. В колбе объемом 100 см3 находится 0,5 г азота. Определить среднюю длину свободного пробега молекул азота при этих условиях.

4.9. В сосуде находится углекислый газ, плотность которого r=1,7 кг/м3; средняя длина свободного пробега его молекул при этих условиях равна <l>=79 нм. Найти диаметр d молекул углекислого газа.

4.10. Определить среднюю длину свободного пробега молекул азота при температуре 17°С и давлении 10 кПа.

4.11. Высотная обсерватория расположена на высоте 3250 м над уровнем моря. Найти давление воздуха на этой высоте. Температуру воздуха считать постоянной и равной 5°С. Молярную массу воздуха принять равной 0,029 кг/моль. Давление воздуха на уровне моря равно 760 мм. рт. ст.

4.12. На какой высоте давление воздуха составляет 75% давления на уровне моря? Температуру воздуха считать постоянной и равной 5°С.

4.13. Определить плотность воздуха: 1) у поверхности Земли; 2) на высоте 4 км от поверхности Земли? Температуру воздуха считать постоянной и равной 0°С. Давление воздуха у поверхности Земли равно 100 кПа.

4.14. Определить плотность разреженного кислорода, если средняя длина свободного пробега <l> молекул равна 3 см.

4.15. Пылинки, взвешенные в воздухе, имеют массу m=10-18 г. Во сколько раз уменьшится их концентрация n при увеличении высоты на Dh=10 м? Температура воздуха T=300 K.

4.16. На сколько уменьшится атмосферное давление p=100 кПа при подъеме наблюдателя над поверхностью Земли на высоту h=100 м? Считать, что температура T воздуха равна 290 K и не изменяется с высотой.

4.17. На какой высоте h над поверхностью Земли атмосферное давление вдвое меньше, чем на ее поверхности? Считать, что температура T воздуха равна 290 K и не изменяется с высотой.

4.18. Барометр в кабине летящего вертолета показывает давление p=90 кПа. На какой высоте h летит вертолет, если на взлетной площадке барометр показывал давление p0=100 кПа? Считать, что температура T воздуха равна 290 K и не изменяется с высотой.

4.19. Найти изменение высоты Dh, соответствующее изменению давления на Dp=100 Па, в двух случаях:1) вблизи поверхности Земли, где температура T1=290 K, давление p1=100 кПа; 2) на некоторой высоте, где температура T2=220 K, давление p2=25 кПа.

4.20. Найти среднюю длину свободного пробега <l> молекул водорода при давлении p=0,1 Па и температуре T=100 K.

4.21. При каком давлении p средняя длина свободного пробега <l> молекул азота равна 1 м, если температура T газа равна 300 K?

4.22. Баллон вместимостью V=10 л содержит водород массой m=1 г. Определить среднюю длину свободного пробега <l> молекул.

4.23. Определить среднюю длину свободного пробега молекул водорода при температуре 67°С и давлении 100 кПа.

4.24. Можно ли считать вакуум с давлением p=100 мкПа высоким, если он создан в колбе диаметром d=20 см, содержащей азот при температуре T=280 K? (Вакуум считается высоким, если длина свободного пробега молекул в нем много больше линейных размеров сосуда)

4.25. Определить плотность r разреженного водорода, если средняя длина свободного пробега <l> молекул равна 1 см.

4.26. Найти среднее число <z> столкновений, испытываемых в течение t=1 c молекулой кислорода при нормальных условиях.

V. ТЕРМОДИНАМИКА

5.1. Азот массой 0,1 кг был изобарно нагрет от температуры 200 К до 400 К. Определить работу, совершенную газом, полученную им теплоту и изменение внутренней энергии азота.

5.2. Кислород массой 250 г, имеющий температуру 200 К, был адиабатно сжат. При этом была совершена работа 25 кДж. Найти конечную температуру газа.

5.3. Во сколько раз увеличится объем водорода, содержащий количество вещества 0,4 моль, при изотермическом расширении, если при этом газ получит 800 Дж тепла. Температура водорода 300 К.

5.4. Водород занимает объем 10 м3 при давлении 0,1 МПа. Его нагрели при постоянном объеме до давления 0,3 МПа. Определить изменение внутренней энергии газа, работу, совершенную им, и теплоту, сообщенную газу.

5.5. Кислород при неизменном давлении 80 кПа нагревается. Его объем увеличивается от 1 м3 до 3 м3. Определить изменение внутренней энергии кислорода, работу, совершенную им при расширении, а так же теплоту, сообщенную газу.

5.6. 10,5 г азота изотермичеси расширяется при температуре 250 К, причем его давление изменяется от 250 кПа до 100 кПа. Найти работу, совершенную газом при расширении.

5.7. В цилиндре под поршнем находится азот, имеющий массу 0,6 кг и занимающий объем 1,2 м3 при температуре 560 К. В результате нагревания газ расширился и занял объем 4,2 м3, причем температура осталась неизменной. Найти изменение внутренней энергии газа, совершенную им работу и теплоту, сообщенную газу.

5.8. 10 г кислорода находятся под давлением 300 кПа и температуре 283 К. После нагревания при постоянном давлении газ занял объем 10 л. Найти количество теплоты, полученное газом, изменение внутренней энергии газа и работу, совершенную газом при расширении.

5.9. 6,5 г водорода, находящегося при температуре 300 К, расширяются вдвое при постоянном давлении за счет притока тепла извне. Найти количество теплоты, полученное газом, изменение внутренней энергии газа и работу, совершенную газом при расширении.

5.10. 2 кмоль углекислого газа нагреваются при постоянном давлении на 50 К. Найти количество теплоты, полученное газом, изменение внутренней энергии газа и работу, совершенную газом при расширении.

5.11. Двухатомному газу сообщено количество теплоты 2 кДж. Газ расширяется при постоянном давлении. Найти работу расширения газа.

5.12. При изобарическом расширении двухатомного газа была совершена работа 156,8 Дж. Какое количество теплоты было сообщено газу?

5.13. 7 г углекислого газа была нагрета на 10 К в условиях свободного расширения. Найти работу расширения газа и изменение его внутренней энергии.

5.14. Гелий, находящийся при нормальных условиях, изотермически расширяется от 1 л до 2 л. Найти работу, совершенную газом при расширении, и количество теплоты, сообщенное газу.

5.15. 200 г азота нагреваются при постоянном давлении от 293 К до 373 К. Какое количество теплоты поглощается при этом? Каков прирост внутренней энергии газа? Какую внешнюю работу производит давление газа?

5.16. Некоторая масса азота при давлении 100 кПа имела объем 5 л, а при давлении 300 кПа – объем 2 л. Переход от первого состояния ко второму был сделан в два этапа: сначала по изохоре, а затем по изобаре. Определить изменение внутренней энергии, количество теплоты и произведенную работу.

5.17. Некоторая масса азота при давлении 100 кПа имела объем 5 л, а при давлении 300 кПа – объем 2 л. Переход от первого состояния ко второму был сделан в два этапа: сначала по изобаре, а затем по изохоре. Определить изменение внутренней энергии, количество теплоты и произведенную работу.

5.18. Производится сжатие некоторой массы двухатомного газа один раз изотермически, другой раз адиабатно. Начальные температура и давление сжимаемого газа оба раза одинаковы. Конечное давление в 2 раза больше начального. Найти отношение работ сжатия при адиабатном и изотермическом процессах.

5.19. В четырехтактном двигателе Дизеля засосанный атмосферный воздух в объеме 10 л подвергается 12-кратному сжатию. Предполагая процесс сжатия адиабатным, определить конечное давление, конечную температуру и работу сжатия, если начальное давление и температура равны 100 кПа и 283 К.

5.20. Во сколько раз увеличится давление водорода, содержащий количество вещества 4 моль, при изотермическом расширении, если при этом газ получит 1000 Дж тепла. Температура водорода 300 К.

5.21. Водород занимает объем 10 м3 при давлении 1 МПа. Его нагрели при постоянном объеме до давления 3 МПа. Определить изменение внутренней энергии газа, работу, совершенную им, и теплоту, сообщенную газу.

5.22. Азот при неизменном давлении 100 кПа нагревается. Его объем увеличивается от 10 м3 до 30 м3. Определить изменение внутренней энергии азота, работу, совершенную им при расширении, а так же теплоту, сообщенную газу.

5.23. 20 моль кислорода нагреваются при постоянном давлении на 150 К. Найти количество теплоты, полученное газом, изменение внутренней энергии газа и работу, совершенную газом при расширении.

5.24. Некоторая масса азота при давлении 100 кПа имела объем 5 л, а при давлении 300 кПа – объем 2 л. Переход от первого состояния ко второму был сделан в два этапа: сначала по адиабате, а затем по изохоре. Определить изменение внутренней энергии, количество теплоты и произведенную работу.

5.25. При уменьшении объема кислорода с 20 до 10 л его давление возросло со 100 до 250 кПа. Был ли этот процесс адиабатическим? Каково изменение внутренней энергии газа?

5.26. Определить работу расширения 110 г углекислого газа при увеличении его объема в 5 раз, если температура газа постоянна и равна 293 К. Какое количество тепла нужно при этом сообщить газу?


VI. КПД ТЕПЛОВЫХ МАШИН

6.1. Идеальный газ, совершающий цикл Карно, 70% количества теплоты, полученной от нагревателя, отдает холодильнику. Количество теплоты, получаемое от нагревателя, равно 5 кДж. Определить: 1) термический КПД цикла; 2) работу, совершенную при полном цикле.

6.2. Идеальный газ, совершающий цикл Карно, получил от нагревателя количество теплоты, равное 5,5 кДж и совершил работу 1,1 кДж. Определить: 1) термический КПД цикла; 2) отношение температур нагревателя и холодильника.

6.3. Идеальный газ совершает цикл Карно. Температура нагревателя 500 К, холодильника 300 К. Работа изотермического расширения газа составляет 2 кДж. Определить: 1) термический КПД цикла; 2) количество теплоты, отданное газом при изотермическом сжатии холодильнику.

6.4. Многоатомный идеальный газ совершает цикл Карно, при этом в процессе адиабатического расширения объем газа увеличился в 4 раза. Определить термический КПД цикла.

6.5. Рабочее тело - идеальный газ - теплового двигателя совершает цикл, состоящий из следующих процессов: изобарного, адиабатического и изотермического. В результате изобарного процесса газ нагревается от 300 К до 600 К. Определить термический КПД теплового двигателя.

6.6. Идеальная тепловая машина работает по циклу Карно. В результате теплового процесса газ совершил работу в 9,8×103 Дж и отдал холодильнику количество теплоты, равное 4,19×104 Дж. Определить КПД цикла.

6.7. Газ совершает цикл Карно. Температура нагревателя равна 100°С. Какова температура холодильника, если 3/4 теплоты, получаемой от нагревателя газ отдает холодильнику?

6.8. Идеальная тепловая машина, работающая по обратному циклу Карно, потребляет мощность, равную 50 л.с. При этом она берет теплоту от тела с температурой –10°С и отдает ее телу с температурой +17°С. Найти: 1) КПД цикла; 2) количество теплоты, отнятое у холодильника за 1 сек; 3) количество теплоты, отданное нагревателю за 1 сек.

6.9. Идеальная тепловая машина, работающая по циклу Карно, получает за каждый цикл от нагревателя 500 кал. Температура нагревателя 400 К, температура холодильника 300 К. Найти работу, совершаемую машиной за один цикл, и количество теплоты, отдаваемое холодильником за один цикл.

6.10. Идеальная тепловая машина работает по циклу Карно. Определить КПД цикла, если известно, что за один цикл была произведена работа 300 Дж и холодильнику было передано 13,4 кДж.

6.11. Идеальная тепловая машина, совершающая цикл Карно, 80% количества теплоты, полученной от нагревателя, отдает холодильнику. Количество теплоты, получаемое от нагревателя, равно 1,5 ккал. Определить: 1) термический КПД цикла; 2) работу, совершенную при полном цикле.

6.12. Идеальная тепловая машина, работающая по обратному циклу Карно, совершает за один цикл работу 37 кДж, при этом она берет теплоту от тела с температурой -10°С и отдает ее телу с температурой +17°С. Найти: 1) КПД цикла; 2) количество теплоты, отнятое у холодильника за один цикл; 3) количество теплоты, отданное нагревателю за один цикл.

6.13. В цикле Карно газ получил от теплоотдатчика теплоту Q1=500 Дж и совершил работу А=100 Дж. Температура теплоотдатчика Т1=400 К. Определить температуру Т2 теплоприемника.

6.14. В результате кругового процесса газ совершил работу 1 Дж и передал охладителю количество теплоты 4,2 Дж. Определить термический КПД цикла.

6.15. Совершая замкнутый процесс, газ получил от нагревателя количество теплоты 4 кДж. Определить работу газа при протекании цикла, если его термический КПД=0,1.

6.16. Идеальный двухатомный газ, содержащий количество вещества n=1 моль, совершает цикл, состоящий из двух изохор и двух изобар. Наименьший объем Vmin=10 л, наибольший Vmax= 20 л, наименьшее давление pmin= 246 кПа, наибольшее pmax=410 кПа. Построить график цикла. Определить температуру газа для характерных точек цикла и его термический КПД.

6.17. Идеальный газ, совершающий цикл Карно, 2/3 количества теплоты Q1, полученного от нагревателя, отдает охладителю. Температура T2 охладителя равна 280 K. Определить температуру T1 нагревателя.

6.18. Идеальный газ совершает цикл Карно. Температура T2 охладителя равна 290 K. Во сколько раз увеличится КПД цикла, если температура нагревателя повысится от 400 K до 600 K?

6.19. Идеальный газ совершает цикл Карно. Температура T1 нагревателя в три раза выше температуры T2 охладителя. Нагреватель передал газу количество теплоты Q1=42 кДж. Какую работу A совершил газ?

6.20. Идеальный газ совершает цикл Карно. Температура T1 нагревателя равна 470 K, температура T2 охладителя равна 280 K. При изотермическом расширении газ совершает работу A= 100 Дж. Определить термический КПД цикла, а также количество теплоты Q2, которое газ отдает охладителю при изотермическом сжатии.

6.21. Идеальный газ совершает цикл Карно. Температура T1 нагревателя в четыре раза выше температуры T2 охладителя. Какую долю количества теплоты, получаемого за один цикл от нагревателя, газ отдает охладителю?

6.22. Идеальный газ, совершающий цикл Карно, получив от нагревателя количество теплоты Q1=4,2 кДж, совершил работу A=590 Дж. Найти термический КПД этого цикла. Во сколько раз температура T1 нагревателя больше температуры T2 охладителя?

6.23. Идеальный газ совершает цикл Карно. Работа A1 изотермического расширения газа равна 5 Дж. Определить работу A2 изотермического сжатия, если термический КПД цикла равен 0,2.

6.24. Наименьший объем V1 двухатомного газа, совершающего цикл Карно, равен 153 л. Определить наибольший объем V3, если объем V2 в конце изотермического расширения и объем V4 в конце изотермического сжатия равны соответственно 600 и 189 л.

6.25. Идеальный двухатомный газ, содержащий количество вещества n=1 моль и находящийся под давлением p1=0,1 МПа при температуре T1=300 K, нагревают при постоянном объеме до давления p2 = 0,2 МПа. После этого газ изотермически расширился до начального давления и затем изобарно был сжат до начального объема V1. Построить график цикла. Определить температуру T газа для характерных точек цикла и его термический КПД.

6.26. Идеальный многоатомный газ совершает цикл, состоящий из двух изохор и двух изобар, причем наибольшее давление газа в два раза больше наименьшего, а наибольший объем в четыре раза больше наименьшего. Определить термический КПД цикла.


<== предыдущая лекция | следующая лекция ==>
Правовая охрана редких и находящихся под угрозой исчезновения растений и животных | Тригибридное комплементарное взаимодействие

Дата добавления: 2015-11-05; просмотров: 1292 | Нарушение авторских прав


Рекомендуемый контект:


Похожая информация:

  1. E) түзілу жылуы мен қаңқалар тебісу энергиясының көбейтіндісі
  2. V. Внутренняя и внешняя среды организации
  3. VII. Жизнь благородная и жизнь пошлая, или энергия и косность
  4. А. Внутренняя энергия тела измениться не может. Б. Может только при совершении работы. В. Может только при теплопередаче. Г. Может при совершении работы и теплопередаче
  5. А. Импульс тела. Б. Импульс силы. В. Кинетическая энергия. Г. Потенциальная энергия. Д. Двойная кинетическая энергия
  6. Агрегатное состояние вещества. Поведение молекул в разных агрегатных состояниях. Энергия одной молекулы газа
  7. Андай тағам өзінің спецификалық-динамикалық әрекетіне аз энергия шығындайды?
  8. Внешняя и внутренняя отделка
  9. Внешняя и внутренняя политика советского союза накануне войны
  10. Внешняя и внутренняя политика СССР накануне Великой Отечественной войны
  11. Внешняя и внутренняя среда организации


Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.023 с.