Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Описание метода и установки для определения коэффициента вязкости




Лабораторная работа №8

 

ОПРЕДЕЛЕНИЕ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ МЕТОДОМ СТОКСА

 

Цель работы: Познакомиться со способом определения коэффициента вязкости жидкости методом Стокса.

 

Оборудование: Стеклянный цилиндр с исследуемой жидкостью, измерительная шкала с миллиметровыми делениями, микрометр, секундомер, набор металлических шариков.

  1. Теоретическая часть

Явления переноса

Явлениями переноса в термодинамически неравновесных системах называются особые необратимые процессы, в результате которых происходит пространственный перенос энергии либо массы, или импульса. К явлениям переноса относятся теплопроводность (обусловлена переносом энергии), диффузия (обусловлена переносом массы) и внутреннее трение (обусловлено переносом импульса).

 

Внутреннее трение (вязкость)

Механизм возникновения внутреннего трения между параллельными слоями жидкости (газа), движущимися с различными скоростями, заключается в том, что из-за хаотичного теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, а движущегося медленнее - увеличивается, что приводит к торможению слоя, движущегося быстрее, и ускорению слоя, движущегося медленнее.

Сила внутреннего трения между двумя слоями жидкости (газа) определяется по закону Ньютона:

(1)

где - коэффициент динамической вязкости, коэффициент пропорциональности,

- градиент скорости (градиентом скорости называется изменение скорости на единицу длины в направлении, перпендикулярном скоростям v1 и v2 (рис.1),

 

Рис. 1

 

площадь слоя, на который действует сила .

В системе СИ единица измерения :

Из (1) получаем: равен динамической вязкости среды, в которой при ламинарном течении и градиенте скорости с модулем, равным 1 м/с на 1м, возникает сила внутреннего трения 1 Н на 1м2 поверхности касания слоев.

Исходя из основных представлений молекулярно-кинетической теории, коэффициент вязкости газов равен:

, (2)

где – плотность газа, - средняя длина свободного пробега молекул, - (3)

средняя скорость движения молекул (здесь -универсальная газовая постоянная, - термодинамическая температура, -молярная масса газа).

Из (2) и (3) следует, что коэффициент вязкости газов возрастает с увеличением температуры. Динамический коэффициент вязкости жидкостей примерно в 104 раз больше, чем у газов и уменьшается с возрастанием температуры.

 

Описание метода и установки для определения коэффициента вязкости

Установка для определения коэффициента вязкости состоит из высокого цилиндрического сосуда, наполненного исследуемой жидкостью (см. рис. 2).

 

Метод Стокса основан на определении скорости медленно движущихся в жидкости тел сферической формы. Рассмотрим падение тела (в нашем случае – металлического шарика) в вязкой покоящейся жидкости. На тело действуют следующие силы:

1. Сила тяжести, направленная вертикально вниз:

, (4),

где - радиус шарика, – плотность материала шарика, - ускорение свободного падения.

2. Сила Архимеда, направленная вертикально вверх:

, (5)

где Vш – объем шарика, – плотность жидкости,

3. Сила сопротивления (эмпирически установленная

Дж. Стоксом), направленная вертикально Рис.2 вверх:

Рис 2
, (6)

где v – скорость падения тела.

Выражение (6) справедливо при обтекании тела жидкостью (газом) без образования вихрей.

Направление сил показано на рис 2.

Рис 2
При движении тела в жидкости, ее молекулы взаимодействуют с молекулами тела. За счет действия межмолекулярных сил в процесс движения вовлекаются соседние молекулы жидкости. Появляется слой жидкости, движущийся вместе с телом со скоростью движения тела. Этот слой увлекает в своем движении соседние слои жидкости, которые на некоторый период времени приходят в плавное безвихревое движение (случай малых скоростей и малых размеров тела).

Вначале скорость движения тела будет возрастать, так как сила тяжести больше суммы сил сопротивления и силы Архимеда.

По второму закону Ньютона:

(7)

По мере увеличения скорости тела сила сопротивления будет также возрастать, наступит такой момент, когда сила тяжести уравновесится суммой сил и , т. е. можно считать, что тело падает с постоянной скоростью. Ускорение станет равным нулю и формула (7) с учетом (4), (5), (6) запишется так:

. (8)

Учитывая, что скорость тела постоянна и равна:

, (9),

где – путь, пройденный в жидкости, t- время, а также, что диаметр тела , для коэффициента вязкости из (8), учитывая (9), получим:

 

(10)

Выражение (10) справедливо лишь при условии d<<D, где D – диаметр сосуда, в который помещается исследуемая жидкость. На практике также необходимо следить за тем, чтобы при движении тело не приближалось к стенкам сосуда.

 

  1. Экспериментальная часть.




Поделиться с друзьями:


Дата добавления: 2015-10-19; Мы поможем в написании ваших работ!; просмотров: 609 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Даже страх смягчается привычкой. © Неизвестно
==> читать все изречения...

2418 - | 2130 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.