Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Принтер 250




принтер | сканер 450

поскольку последнее число равно сумме двух предыдущих, можно сразу же придти к выводу, что в этом сегменте сети нет сайтов, на которых ключевыми словами являются одновременно принтер и сканер:

принтер & сканер 0

диаграмма Эйлера для этого случая показана на рисунке справа:

2) с этого момента все просто: для того, чтобы определить, сколько сайтов удовлетворяют заданному условию

достаточно просто сложить числа, соответствующие запросам принтер & монитор и
сканер & монитор

3) таким образом, правильный ответ: 40 + 50 = 90.

Возможные проблемы: · обратите внимание, что в условии была лишняя информация: мы нигде не использовали количество сайтов в данном сегменте Интернета (1000) и количество сайтов с ключевым словом монитор (450) · не всегда удается «раскрутить» задачу в уме, здесь это несложно благодаря «удачному» условию

Решение (вариант 3, таблицы истинности):

1) для сокращения записи обозначим через C, П, М высказывания «ключевое слово на сайте – сканер» (соответственно принтер, монитор)

2) если рассматривать задачу с точки зрения математической логики, здесь есть три переменных, с помощью которых можно составить всего 8 запросов, выдающих различные результаты

  С П М
?      
?      
?      
?      
?      
?      
?      
?      
всего      

3) составим таблицу истинности, в которую добавим левый столбец и последнюю строку, где будем записывать количество сайтов, удовлетворяющих условиям строки и столбца (см. рисунок справа); например, первая строка соответствует сайтам, на которых нет ни одного из заданных ключевых слов; такая схема непривычна, но она существенно упрощает дело

4) сумма в последней строчке получается в результате сложения всех чисел из тех строк первого столбца, где в данном столбце стоят единицы. Например, сумма в столбце С – складывается из четырех чисел в последних четырех строчках первого столбца. Мы пока не знаем, сколько результатов возвращает каждый из восьми запросов отдельно, поэтому в первом столбце стоят знаки вопроса

5) добавим в таблицу истинности остальные запросы, которые есть в условии, в том числе и тот, который нас интересует:

П | С = принтер | сканер 450

П & М = принтер & монитор 40

C & М = сканер & монитор 50

(П | C) & М = (принтер | сканер) & монитор?

  С П М П | С П & М C & М (П | C) & М
?              
?              
?              
?              
?              
?              
               
               
всего              

6) проанализируем столбец П | С в этой таблице: его сумма (450) складывается из суммы столбцов С (200) и П (250) – выделены ярким зеленым цветом – плюс последние две строчки (голубой фон), то есть, 450 = 200 + 250 + X, откуда сразу получаем, что X = 0, то есть, последним двум строчкам (запросам) не удовлетворяет ни одного сайта

7) теперь составим таблицы истинности для остальных запросов, отбросив заведомо «нулевые» варианты:

  С П М П | С П & М C & М (П | C) & М
?              
?              
?              
               
?              
               
всего              

из оставшихся шести строк таблицы запросы П & М и С & М затрагивают только по одной строчке, поэтому сразу можем вписать соответствующие числа в первый столбец; в последнем запросе, который нас интересует, присутствуют именно эти две строки, то есть, для получения нужно сложить 40 и 50

8) таким образом, правильный ответ: 40 + 50 = 90.

Решение (вариант 3, через диаграммы и систему уравнений):

1) для сокращения записи обозначим через C, П, М высказывания «ключевое слово на сайте – сканер» (соответственно принтер, монитор) и нарисуем эти области виде диаграммы (кругов Эйлера); интересующему нас запросу (П | C) & M соответствует объединение областей 4, 5 и 6 («зеленая зона» на рисунке)

2) количество сайтов, удовлетворяющих запросу в области i, будем обозначать через Ni

3) составляем уравнения, которые определяют запросы, заданные в условии:

сканер N1 + N2 + N4 + N5 = 200

принтер N2 + N3 + N5 + N6 = 250

принтер | сканер N1 + N2 + N4 + N5 + N3 + N6 = 450

из первого и третьего уравнений сразу следует

200 + N3 + N6 = 450 Þ N3 + N6 = 250

далее из второго уравнения

N2 + N5 + 250 = 250 Þ N2 + N5 = 0

поскольку количество сайтов не может быть отрицательной величиной, N2 = N5 = 0

4) посмотрим, что еще мы знаем (учитываем, что N5 = 0):

принтер & монитор N5 + N6 = 40 Þ N6 = 40

сканер & монитор N4 + N5 = 50 Þ N4 = 50

5) окончательный результат:

(принтер | сканер) & монитор N4 + N5 + N6 = N4 + N6 = 40 + 50 = 90

6) таким образом, правильный ответ 90.

Возможные проблемы: · внимательнее с индексами переменных, очень легко по невнимательности написать N5 вместо N6 и получить совершенно другой результат · этот метод ярко демонстрирует, что в общем случае мы получаем систему уравнения с семью неизвестными (или даже с восемью, если задействована еще и область вне всех кругов); решать такую систему вручную достаточно сложно, поэтому на экзамене всегда будет какое-то условие, сильно упрощающее дело, ищите его

Еще пример задания:

В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

  Запрос Количество страниц (тыс.)
  мезозой    
  кроманьонец    
  неандерталец    
  мезозой | кроманьонец    
  мезозой | неандерталец    
  неандерталец & (мезозой | кроманьонец)    

Сколько страниц (в тысячах) будет найдено по запросу

кроманьонец & (мезозой | неандерталец)

Решение (способ 1, круги Эйлера):

1) обозначим области «мезозой», «кроманьонец» и «неандерталец» буквами М, К и Н; пронумеруем подобласти, получившиеся в результате пересечений кругов (см. рисунок справа)

2) через i обозначим количество сайтов в области с номером i

3) нас интересует результат запроса

кроманьонец & (мезозой | неандерталец)

то есть N­2 + N5 + N6(зеленая область на рисунке)

4) из первых двух запросов следует, что

N1 + N2 + N4 + N5 = 50 (мезозой)

N2 + N3 + N5 + N6 = 60 (кроманьонец)

5) складывая левые и правые части уравнений, получаем

(1) N1 + 2·N2 + N3 + N4 + 2·N5 + N6 = 110

6) в то же время из запроса 4 получаем

(2) N1 + N2 + N3 + N4 + N5 + N6 = 80 (мезозой | кроманьонец)

7) вычитая из уравнения (1) уравнение (2), отдельно левые и правые части, получаем

N2 + N5 = 30 (мезозой & кроманьонец)

вспомним, что наша цель – определить N­2 + N5 + N6, поэтому остается найти N6

8) из запросов 1 и 3 следует, что

N1 + N2 + N4 + N5 = 50 (мезозой)

N4 + N5 + N6 + N7 = 70 (неандерталец)

9) складывая левые и правые части уравнений, получаем

(3) N1 + N2 + 2·N4 + 2·N5 + N6 + N7 = 120

10) в то же время из запроса 5 получаем

(4) N1 + N2 + N4 + N5 + N6 + N7 = 100 (мезозой | неандерталец)

11) вычитая из уравнения (3) уравнение (4), отдельно левые и правые части, получаем

(5) N4 + N5 = 20 (мезозой & неандерталец)

12) теперь проанализируем запрос 6:

неандерталец & (мезозой | кроманьонец)

(6) N4 + N5 + N­6 = 20

13) вычитая из уравнения (6) уравнение (5) получаем N6 = 0, поэтому

N2 + N5 + N6 = N2 + N5 = 30

14) таким образом, ответ – 30.

Решение (способ 2, М.С. Коротков, г. Челябинск, Лицей № 102):

1) пп. 1-3 такие же, как в первом способе;

2) из запросов 1 и 6 следует, что

(1) N4 + N5 + N6 + N7 = 70 (неандерталец)

(2) N4 + N5 + N­6 = 20 неандерталец & (мезозой | кроманьонец)

3) вычитая (2) из (1), сразу получаем, что N7 = 50

4) из запросов 5 и 4 следует, что

(3) N1 + N2 + N4 + N5 + N6 + N7 = 100 (мезозой | неандерталец)

(4) N1 + N2 + N3 + N4 + N5 + N6 = 80 (мезозой | кроманьонец)

5) вычитая (4) из (3), сразу получаем, что N7 - N3 = 20

6) в п. 3 мы уже определили, что N7 = 50, поэтому 50 - N3 = 20, откуда N3 = 30

7) из запроса 2 получаем

N2 + N3 + N5 + N6 = 60 (кроманьонец)

поэтому размер интересующей нас области равен

N2 + N5 + N6 = 60 – N3 = 60 – 30 = 30

8) таким образом, ответ – 30.

Решение (способ 3, круги Эйлера, И.Б. Курбанова, г. Санкт-Петербург, ГОУ СОШ № 594):

1) обозначим: М – мезозой, К – кроманьонец, Н – неандерталец.

2) нас интересует результат запроса (см. диаграмму Эйлера)

K & (M | Н)

3) т.к. по условию М = 50, К = 60, а объединение этих множеств М | К = 80, можно сделать вывод, что область пересечения

M & K = 50 + 60 – 80 = 30;

4) т.к. по условию М = 50, Н = 70, а объединение этих множеств М | Н = 100, можно сделать вывод, что область пересечения

M & Н = 50 + 70 – 100 = 20;

5) заметим, что M & Н = 20 и Н & (М | К) = 20, следовательно множества Н и К не пересекаются (К & Н = 0);

6) перерисуем диаграмму Эйлера так, чтобы множества К и Н не пересекались (см. рисунок справа); из новой схемы видно, что

К & (М | Н) = (К & М) | (К & Н) = К & М = 30

7) ответ: 30


Задачи для тренировки[3]:

Во всех задачах для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – символ &.

1) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А) физкультура

Б) физкультура & подтягивания & отжимания

В) физкультура & подтягивания

Г) физкультура | фитнесс

2) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А) волейбол | баскетбол | подача

Б) волейбол | баскетбол | подача | блок

В) волейбол | баскетбол

Г) волейбол & баскетбол & подача

3) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

A) чемпионы | (бег & плавание)

Б) чемпионы & плавание

В) чемпионы | бег | плавание

Г) чемпионы & Европа & бег & плавание

4) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А) музыка | классика | Моцарт | серенада

Б) музыка | классика

В) музыка | классика | Моцарт

Г) музыка & классика & Моцарт

5) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.

А) реферат | математика | Гаусс

Б) реферат | математика | Гаусс | метод

В) реферат | математика

Г) реферат & математика & Гаусс

6) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

a) Америка | путешественники | Колумб

b) Америка | путешественники | Колумб | открытие

c) Америка | Колумб

d) Америка & путешественники & Колумб

7) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

а) Информатика & уроки & Excel

b) Информатика | уроки | Excel | диаграмма

с) Информатика | уроки | Excel

d) Информатика | Excel

8) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А) Гренландия & Климат & Флора & Фауна

Б) Гренландия & Флора

В) (Гренландия & Флора) | Фауна

Г) Гренландия & Флора & Фауна

9) В таблице приведены запросы к поисковому серверу. Расположите обозначения запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

а) спорт | футбол

b) спорт | футбол | Петербург | Зенит

с) спорт | футбол | Петербург

d) спорт & футбол & Петербург & Зенит

10) Каким условием нужно воспользоваться для поиска в сети Интернет информации о цветах, растущих на острове Тайвань или Хонсю

1) цветы & (Тайвань | Хонсю)

2) цветы & Тайвань & Хонсю

3) цветы | Тайвань | Хонсю

4) цветы & (остров | Тайвань | Хонсю)

11) Некоторый сегмент сети Интернет состоит из 1000 сайтов. Поисковый сервер в автоматическом режиме составил таблицу ключевых слов для сайтов этого сегмента. Вот ее фрагмент:

Ключевое слово Количество сайтов, для которых данное слово является ключевым
сомики 250
меченосцы 200
гуппи 500

Сколько сайтов будет найдено по запросу

сомики | меченосцы | гуппи

если по запросу сомики & гуппи было найдено 0 сайтов, по запросу
сомики & меченосцы – 20, а по запросу меченосцы & гуппи – 10.

12) Некоторый сегмент сети Интернет состоит из 1000 сайтов. Поисковый сервер в автоматическом режиме составил таблицу ключевых слов для сайтов этого сегмента. Вот ее фрагмент:

Ключевое слово Количество сайтов, для которых данное слово является ключевым
сомики 250
меченосцы 200
гуппи 500

Сколько сайтов будет найдено по запросу

(сомики & меченосцы) | гуппи

если по запросу сомики | гуппи было найдено 750 сайтов, по запросу сомики & меченосцы – 100, а по запросу меченосцы & гуппи – 0.

13) Некоторый сегмент сети Интернет состоит из 1000 сайтов. Поисковый сервер в автоматическом режиме составил таблицу ключевых слов для сайтов этого сегмента. Вот ее фрагмент:

Ключевое слово Количество сайтов, для которых данное слово является ключевым
сканер 200
принтер 250
монитор 450

Сколько сайтов будет найдено по запросу

принтер | сканер | монитор

если по запросу принтер | сканер было найдено 450 сайтов, по запросу принтер & монитор – 40, а по запросу сканер & монитор – 50.

14) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А) (огурцы & помидоры) & (прополка | поливка)

Б) огурцы | помидоры

В) огурцы

Г) огурцы & помидоры

15) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А) экзамен | тестирование

Б) (физика | химия) & (экзамен | тестирование)

В) физика & химия & экзамен & тестирование

Г) физика | химия | экзамен | тестирование

16) В таблице приведены запросы к поисковому серверу, условно обозначенные буквами от А до Г. Расположите запросы в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Ответ запишите в виде последовательности соответствующих букв.

А) сомики | меченосцы | содержание

Б) сомики & содержание

В) сомики & меченосцы & разведение & содержание

Г) (сомики | меченосцы) & содержание

17) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1) канарейки | щеглы | содержание

2) канарейки & содержание

3) канарейки & щеглы & содержание

4) разведение & содержание & канарейки & щеглы

18) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1) барокко | (классицизм & ампир)

2) барокко | классицизм

3) барокко | ампир | классицизм

4) классицизм & ампир

19) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1) барокко | (классицизм & ампир)

2) барокко | классицизм

3) (классицизм & ампир) | (барокко & модерн)

4) барокко | ампир | классицизм

20) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1) зайцы & кролики

2) зайцы & (кролики | лисицы)

3) зайцы & кролики & лисицы

4) кролики | лисицы

21) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1) кролики | лисицы

2) (зайцы & кролики) | (лисицы & волки)

3) зайцы & кролики & лисицы & волки

4) зайцы & кролики

22) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1) шкафы | столы | стулья

2) шкафы | (стулья & шкафы)

3) шкафы & столы

4) шкафы | стулья

23) В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу. Для обозначения логической операции «ИЛИ» в запросе используется символ |, а для логической операции «И» – &.

1) яблоки | сливы

2) сливы | (сливы & груши)

3) яблоки | груши | сливы

4) (яблоки | груши) & сливы

24) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
фрегат | эсминец 3000
фрегат 2000
эсминец 2500

Сколько страниц (в тысячах) будет найдено по запросу

фрегат & эсминец

25) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
фрегат & эсминец 500
фрегат 2000
эсминец 2500

Сколько страниц (в тысячах) будет найдено по запросу

фрегат | эсминец

26) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
фрегат & эсминец 500
фрегат | эсминец 4500
эсминец 2500

Сколько страниц (в тысячах) будет найдено по запросу

Фрегат

27) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
крейсер | линкор 7000
крейсер 4800
линкор 4500

Сколько страниц (в тысячах) будет найдено по запросу

крейсер & линкор

28) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

Запрос Количество страниц (тыс.)
торты | пироги 12000
торты & пироги 6500
пироги 7700

Сколько страниц (в тысячах) будет найдено по запросу

Торты

29) В таблице приведены запросы и количество страниц, которые нашел поисковый сервер по этим запросам в некотором сегменте Интернета:

 

Запрос Количество страниц (тыс.)
пирожное | выпечка 14200
пирожное 9700
пирожное & выпечка 5100

Сколько страниц (в тысячах) будет найдено по запросу





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 1019 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Есть только один способ избежать критики: ничего не делайте, ничего не говорите и будьте никем. © Аристотель
==> читать все изречения...

2364 - | 2346 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.