Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Доверительные интервалы и доверительные вероятности




Теоремы 1 и 2 хотя и являются общими, т. е. сформулированы при достаточно широких предположениях, они не дают возможности установить, насколько близки оценки к оцениваемым параметрам. Из факта, что —оценки являются состоятельными, следует только то, что при увеличении объема выборки значение P (| θ * – θ | < δ), δ < 0, приближается к 1.

Возникают следующие вопросы.

1) Каким должен быть объем выборки п, чтобы заданная точность
| θ * – θ | = δ была гарантирована с заранее принятой вероятностью?

2) Какова точность оценки, если объем выборки известен и вероятность безошибочности вывода задана?

3) Какова вероятность того, что при заданном объеме выборки будет обеспечена заданная точность оценки?

Введем несколько новых определений.

Определение. Вероятность γ выполнения неравенства, | θ *– θ | < δ называется доверительной вероятностью или надежностью оценки θ.

(1)

Перейдем от неравенства | θ *– θ | < δ к двойному неравенству. Известно, что . Поэтому доверительную вероятность можно записать в виде

(2)

Так как θ (оцениваемый параметр) – число постоянное, а θ * – величина случайная, понятие доверительной вероятности сформулировать так: доверительной вероятностью γ называется вероятность того, что интервал (θ *– δ, θ *+ δ) накрывает оцениваемый параметр.

Определение. Случайный интервал (θ *– δ, θ *+ δ), в пределах которого с вероятностью γ находится неизвестный оцениваемый параметр, называется доверительным интервалом İ, соответствующим коэффициенту доверия γ,

İ= (θ*– δ, θ*+ δ). (3)

Надежность оценки γ может задаваться заранее, тогда, зная закон распределения изучаемой случайной величины, можно найти доверительный интервал İ. Решается и обратная задача, когда по заданному İ находится соответствующая надежность оценки.

Пусть, например, γ = 0,95; тогда число р = 1 – у = 0,05 показывает, с какой вероятностью заключение о надежности оценки ошибочно. Число р=1–γ называется уровнем значимости. Уровень значимости задается заранее в зависимости от конкретного случая. Обычно р принимают равным 0,05; 0,01; 0,001.

Выясним, как построить доверительный интервал для математического ожидания нормально распределенного признака. Было показано, что

Оценим математическое ожидание с помощью выборочной средней учитывая, что также имеет нормальное распределение*. Имеем

(4)

а по формуле (12.9.2) получаем

Принимая во внимание (13.5.12), получим

(5)

Пусть известна вероятность γ. Тогда

Для удобства пользования таблицей функции Лапласа положим тогда а

(6)

Интервал

(7)

накрывает параметр а = М (Х)с вероятностью γ.

В большинстве случаев среднее квадратическое отклонение σ(Х) исследуемого признака неизвестно. Поэтому вместо σ (Х)при большой выборке (n > 30) применяют исправленное выборочное среднее квадратическое отклонение s, являющееся, в свою очередь оценкой σ (X), доверительный интервал будет иметь вид

İ =

Пример. С вероятностью γ = 0,95 найти доверительный интервал для М (Х)– длины колоса ячменя сорта «Московский 121». Распределение задается таблицей, в которой' вместо интервалов изменения (х i, х i + 1) взяты числа , см. Считать, что случайная величина X подчинена нормальному распределению.

 

7,5 8,5 9,5 10,5 11,5 12,5 13,5
ni              

Решение. Выборка большая (n = 50). Имеем

Найдем точность оценки

Определим доверительные границы:

Таким образом, с надежностью γ = 0,95 математическое ожидание заключено в доверительном интервале I = (9,5; 10,3).

Итак, в случае большой выборки (n > 30), когда исправленное среднее квадратическое отклонение незначительно отклоняется от среднего квадратического отклонения значения признака в генеральной совокупности, можно найти доверительный интервал. Но делать большую выборку удается не всегда и это не всегда целесообразно. Из (7) видно, что чем меньше п, тем шире доверительный интервал, т. е. I зависит от объема выборки п.

Английский статистик Госсет (псевдоним Стьюдент) доказал, что в случае нормального распределения признака X в генеральной совокупности нормирования случайная величина

(8)

зависит только от объема выборки. Была найдена функция распределения случайной величины Т и вероятность P (T < tγ), tγ – точность оценки. Функция, определяемая равенством

s (n, tγ) = P (| T | < tγ) = γ (9)

названа t-распределением Стьюдента с п – 1 степенями свободы. Формула (9) связывает случайную величину Т, доверительный интервал İ и доверительную вероятность γ. Зная две из них, можно найти третью. Учитывая (8), имеем

(10)

Неравенство в левой части (13.7.10) заменим равносильным ему неравенством . В результате получим

или

(11)

где tγ = t (γ, n). Для функции tγ составлены таблицы (см. Приложение 5). При n >30 числа tγ и t, найденные по таблице функции Лапласа, практически совпадают.

Доверительный интервал для оценки среднего квадратического отклонения σx в случае нормального распределения.

Теорема. Пусть известно, что случайная величина имеет нормальное распределение. Тогда для оценки параметра σх этого закона имеет место равенство

(12)

где γ – доверительная вероятность, зависящая от объема выборки п и точности оценки β.

Функция γ = Ψ (n, β) хорошо изучена. С ее помощью определяют β = β (γ, п). Для β = β (γ, п) составлены таблицы, по которым по известным п (объему выборки) и γ (доверительной вероятности) определяется β.

Пример. Для оценки параметра нормально распределенной случайной величины была сделана выборка (дневной удой 50 коров) и вычислено s = 1,5. Найти доверительный интервал, накрывающий с вероятностью γ = 0,95.

Решение. По таблице β (γ, п) для n = 50 и γ = 0,95 находим β = 0,21 (см. Приложение 6).

В соответствии с неравенством (13) найдем границы доверительного интервала. Имеем

1,5 – 0,21·1,5 = 1,185; 1,5 + 0,21·1,5 = 1,185;

1,185 < σ < 1,185.





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 605 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Два самых важных дня в твоей жизни: день, когда ты появился на свет, и день, когда понял, зачем. © Марк Твен
==> читать все изречения...

2362 - | 2193 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.