Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Выборочное среднее квадратическое отклонение




Определение. Арифметическое значение квадратного корня из выборочной дисперсии называется выборочным средним квадратическим отклонением:

(10)

Исправленное выборочное среднее квадратическое отклонение

(11)

4. Мода. Определение. Модой М0 называют значение признака, которое имеет наибольшую частоту (ni = max).

Например, для распределения, данного табл. 5, мода равна 5.

5. Медиана. Медианой те называют значение признака, которое делит статистическое распределение на две равные части:

me = xk +1, если n = 2 k +1,

me = , если n =2 k

6. Коэффициент вариации. Для сравнивания меры рассеяния значений признаков около выборочной средней в разных выборках служит коэффициент вариации.

Определение. Коэффициентом вариации V называется отношение выборочного среднего квадратического отклонения к выборочной средней, выраженное в процентах:

(12)

Пусть изучается случайная величина X. Из генеральной совокупности сделана выборка объема п со значениями признака х1 х2,..., хn. Предположим, что х1, х2,...,хn различны. Их можно рассматривать как случайные величины Х1, Х2,..., Хn, имеющие то же распределение, что и случайная величина X, и, следовательно, одинаковые значения М (ХD (Х). Тогда

Воспользовавшись свойствами дисперсии находим

Пусть σ – средняя квадратическая ошибка выборочной средней. Тогда

Вывод. Средняя квадратическая ошибка выборочной средней σ ( B раз меньше среднего квадратического отклонения случайной величины X, возможные значения которой попали в выборочную совокупность.





Поделиться с друзьями:


Дата добавления: 2015-10-06; Мы поможем в написании ваших работ!; просмотров: 837 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Настоящая ответственность бывает только личной. © Фазиль Искандер
==> читать все изречения...

2464 - | 2203 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.01 с.