Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Явление резонанса




Явление резонанса относится к наиболее важным с практической точки зрения свойствам электрических цепей. Оно заключается в том, что электрическая цепь, имеющая реактивные элементы обладает чисто резистивным сопротивлением.

Общее условие резонанса для любого двухполюсника можно сформулировать в виде Im[Z]=0 или Im[Y]=0, где Z и Y комплексное сопротивление и проводимость двухполюсника. Следовательно, режим резонанса полностью определяется параметрами электрической цепи и не зависит от внешнего воздействия на нее со стороны источников электрической энергии.

 

Для определения условий возникновения режима резонанса в электрической цепи нужно:

найти ее комплексное сопротивление или проводимость;

выделить мнимую часть и приравнять нулю.

 

Все параметры электрической цепи, входящие в полученное уравнение, будут в той или иной степени влиять на характеристики явления резонанса.

 

Уравнение Im[Z]=0 может иметь несколько корней решения относительно какого-либо параметра. Это означает возможность возникновения резонанса при всех значениях этого параметра, соответствующих корням решения и имеющих физический смысл.

 

В электрических цепях резонанс может рассматриваться в задачах:

анализа этого явления при вариации параметров цепи;

синтеза цепи с заданными резонансными параметрами.

 

Электрические цепи с большим количеством реактивных элементов и связей могут представлять значительную сложность при анализе и почти никогда не используются для синтеза цепей с заданными свойствами, т.к. для них не всегда возможно получить однозначное решение. Поэтому на практике исследуются простейшие двухполюсники и с их помощью создаются сложные цепи с требуемыми параметрами.

 

Простейшими электрическими цепями, в которых может возникать резонанс, являются последовательное и параллельное соединения резистора, индуктивности и емкости. Соответственно схеме соединения, эти цепи называются последовательным и параллельным резонансным контуром. Наличие резистивного сопротивления в резонансном контуре по определению не является обязательным и оно может отсутствовать как отдельный элемент (резистор). Однако при анализе резистивным сопротивлением следует учитывать по крайней мере сопротивления проводников.

 

Последовательный резонансный контур представлен на рис. 1 а). Комплексное сопротивление цепи равно

 

 

Таким образом, резонанс в цепи наступает независимо от значения резистивного сопротивления R когда индуктивное сопротивление xL = w L равно емкостному xC = 1/(w C). Как следует из выражения (2), это состояние может быть получено вариацией любого их трех параметров - L, C и w, а также любой их комбинацией. При вариации одного из параметров условие резонанса можно представить в виде

 

Все величины, входящие в выражение (3) положительны, поэтому эти условия выполнимы всегда, т.е. резонанс в последовательном контуре можно создать

изменением индуктивности L при постоянных значениях C и w;

изменением емкости C при постоянных значениях L и w;

изменением частоты w при постоянных значениях L и C.

 

Наибольший интерес для практики представляет вариация частоты. Поэтому рассмотрим процессы в контуре при этом условии.

 

При изменении частоты резистивная составляющая комплексного сопротивления цепи Z остается постоянной, а реактивная изменяется. Поэтому конец вектора Z на комплексной плоскости перемещается по прямой параллельной мнимой оси и проходящей через точку R вещественной оси (рис. 1 б)). В режиме резонанса мнимая составляющая Z равна нулю и Z = Z = Zmin = R, j = 0, т.е. полное сопротивление при резонансе соответствует минимальному значению

Индуктивное и емкостное сопротивления изменяются в зависимости от частоты так, как показано на рис. 2. При частоте стремящейся к нулю xC ® µ, xL ® 0, и j ® - 90° (рис. 1 б)). При бесконечном увеличении частоты - xL ® µ, xC ® 0, а j ® 90°. Равенство сопротивлений xL и xC наступает в режиме резонанса при частоте w0.

 

Рассмотрим теперь падения напряжения на элементах контура. Пусть резонансный контур питается от источника, обладающего свойствами источника ЭДС, т.е. напряжение на входе контура u = const, и пусть ток в контуре равен i=Imsinw t. Падение напряжения на входе уравновешивается суммой напряжений на элементах

 

Переходя от амплитудных значений к действующим, из выражения (4) получим напряжения на отдельных элементах контура

 

а при резонансной частоте

 





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 384 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Самообман может довести до саморазрушения. © Неизвестно
==> читать все изречения...

2627 - | 2467 -


© 2015-2025 lektsii.org - Контакты - Последнее добавление

Ген: 0.011 с.