Лекции.Орг


Поиск:




Гомоморфная обработка изображений




Как показал Стокхэм [1], образование изображения является преимущественно мультипликативным процессом. В естественных условиях наблюдаемая яркость, запечатленная на сетчатке глаза или на фотографической пленке, может рассматриваться как произведение двух составляющих: функции освещенности и функции отражательной способности. Функция освещенности описывает освещенность спектра в различных точках, и ее можно считать независимой от предметов, расположенных на этой сцене. Функция отражательной способности характеризует детали сцены и может считаться независимой от освещенности. Таким образом, изображение может быть представлено как двумерный пространственный сигнал, выраженный в форме

,

где изображение, составляющая освещенности, a составляющая отражательной способности. Отрицательные значения яркости по физическим причинам исключаются, а нулевая яркость исключается по практическим соображениям.

При обработке изображения часто возникают две задачи — сжатие динамического диапазона и усиление контрастности. Первая из их вызвана тем, что часто встречаются сцены с чрезмерными отношениями уровня светлого к уровню темного, что приводит к слишком большому динамическому диапазону по сравнению с возможностями имеющегося приемника, например фотографической пленки. Решение состоит в записи модифицированной интенсивности , связанной с в следующем виде:

(1)

Параметр хорошо известен фотографам, которые выбором фотоматериалов и изменением времени проявления регулируют численное значение . Когда выбрано положительным, но меньшим единицы, происходит сжатие динамического диапазона.

Другая задача состоит в такой обработке изображения, которая увеличивала бы контрастность, придавая большую четкость краям предметов. Это усиление контрастности часто достигается модификацией картины распределения пространственной яркости в соответствии с (1) при , выбранном больше единицы.

Ясно, что при таком специфическом подходе сжатие динамического диапазона и усиление контрастности являются противоречивыми задачами. Сжатие динамического диапазона, достигаемое при использовании , меньшего единицы, вызывает уменьшение контрастности и может дать темное или размытое изображение. Усиление контрастности, достигнутое применением , большего единицы, увеличивает динамический диапазон изображения, причем в результате этого часто еще более затрудняется возможность передачи этого диапазона.

Для получения приемлемой аппроксимации сжатие динамического диапазона можно рассматривать как проблему, сосредоточенную на функции освещенности ,а усиление контрастности — как проблему, сосредоточенную на функции отражательной способности , т.е. считать, что большие динамические диапазоны, встречающиеся в естественных изображениях, обусловлены главным образом большим изменением освещенности, в то время как очертания краев предметов связаны только с составляющей отражательной способности. Таким образом, можно отдельно ввести функции отражательной способности и освещенности, модифицировать каждую из них различными показателями степени и затем восстановить их для того, чтобы сформировать модифицированное изображение. При таком подходе модифицированная яркость

,

где меньше единицы для сжатия динамического диапазона и больше единицы для усиления контрастности.

Имея перед собой эту задачу, можно говорить об обработке изображения с помощью гомоморфного фильтра, т.е. о раздельной обработке составляющих освещенности и отражательной способности. Такое устройство обработки изображения могло бы иметь вид, показанный на рис. 2. Функция освещенности обычно изменяется медленно, в то время как отражательная способность часто (но не всегда) изменяется быстро, так как предметы изменяют структуру и размеры и почти всегда имеют хорошо очерненные края. Если бы и имели частотные составляющие, занимающие отдельные области пространственных частот, то их можно было бы обработать по отдельности в соответствии с рис. 2.

Рис. 2. Каноническая форма устройства обработки изображения, производящего раздельное изменение компонент освещенности и отражательной способности исходного изображения.

Целесообразно предположить, что содержит главным образом низкие пространственные частоты. Быстрые изменения в способствуют появлению высоких пространственных частот в ,хотя отражательная способность вносит некоторый вклад и в низкие пространственные частоты. Таким образом, возможна только частично независимая обработка. Тем не менее на практике оказалось полезным связать низкие пространственные частоты с ,а высокие пространственные частоты — с .При таком предположении линейный фильтр (рис. 3) выбирался так, чтобы он производил умножение низких пространственных частот на и высоких пространственных частот на .

Рис. 3. Частотная характеристика линейного фильтра (рис. 2) для одновременного сжатия динамического диапазона и усиления контрастности.

При выполнении этой обработки частотная характеристика фильтра выбиралась так, чтобы она имела общий вид, как на рис. 3, и была изотропной с нулевой фазой. Линейная обработка проводилась с применением методов высокоскоростной свертки, выполняемых в двух измерениях. На рис. 4 приведены два примера изображений, обработанных таким образом для одновременного изменения динамического диапазона и усиления контрастности.

а) б)
в) г)

Рис. 4. Изображения а) и в) после обработки с целью одновременного изменения (растяжения или сжатия) динамического диапазона и усиления контрастности. Результаты обработки представлены на рис. 4 б) и г) соответственно.

Литература

  1. Blackman R.B., Tukey Y.W., "The Measurement of Power Spectra from the Point of View of Communication Engineering", Dover, 1959.
  2. Голд Б., Рэйдер Ч. Цифровая обработка сигналов. Пер. с англ., под ред. А.М.Трахтмана. М., "Сов. радио", 1973, 368 с.

В пакете Image Processing Toolbox системы MATLAB существует довольно много функций для решения тех или иных задач обработки изображений, которые оперируют такими понятиями как функция распространения точки, обращение двумерной свертки (например, deconvblind, deconvlucy, deconvreg, deconvwnr [2] и др.). Рассмотрим это более детально с точки зрения теории.

Деконволюция

Решение задачи деконволюции заключается в обращении двумерной свертки. Термин "деконволюция" охватывает наиболее важные и широко используемые методы обработки изображений. Необходимость в такой операции возникает во всех областях науки, связанных с измерениями. По методах деконволюции существует большое число работ [1].

Задача деконволюции может быть решена несколькими способами. Выбор наиболее подходящего для решения этой задачи метода зависит от ряда факторов, в том числе от формы и протяженности функции распространения точки (ФРТ), характера исходного изображения и степени усечения его кадровым окном записывающего устройства.

Какой бы метод не использовался, почти всегда необходимо провести предварительную обработку заданного искаженного изображения для преобразования его в форму, удобную для выполнения процедуры деконволюции. Предварительную обработку целесообразно разделить на пять категорий: сглаживание, разбиение на фрагменты, аподизацию (взвешивание обрабатываемого отрезка сигнала весовой функцией), расширение границ и сверхразрешение. Под сглаживанием изображения здесь понимается уменьшение зашумленности. Разбиение на фрагменты включает разделение изображения с пространственно-зависимой ФРТ на фрагменты, в каждом из которых ФРТ может приближенно рассматриваться как пространственно-инвариантная. Аподизация - это метод, позволяющий уменьшить влияние кадрового окна (записывающего устройства), которое производит усечение изображения. Однако этот метод может быть менее эффективным, нежели метод расширения границ, который мы удачно применяли в ряде случаев. Известны две модификации метода расширения границ - простое расширение и расширение с перекрыванием. Второй метод, как правило, более предпочтителен, поскольку в нем используются преимущества условия согласованности периодических сверток. Это еще один пример того, как повышается эффективность численного метода, когда более полно учитываются особенности исследуемой задачи в плане математической физики. Сверхразрешение рассматривается как процедура предварительной обработки, поскольку в конечном счете она позволяет уменьшить зашумленность.

Существует также мультипликативная деконволюция, которая является наиболее распространенным методом восстановления изображения, представимого в виде согласованной свертки. Искаженное изображение, которое не является таким, следует преобразовать к виду согласованной свертки.

Метод субтрактивной деконволюции оказывается особенно полезным, когда дефекты, имеющиеся в записанном изображении, связаны не с потерей разрешения, а с искажением небольших деталей, например в случае, когда ФРТ имеет такой же узкий основной лепесток, как и разрешаемая деталь, но обладает широким хвостом значительной амплитуды или характеризуется высокими боковыми лепестками. Метод субтрактивной деконволюции можно легко модифицировать таким образом, чтобы включить пространственно-зависимые искажения, хотя вычислительная реализация этих методов становится тогда очень сложной.

Существуют различные подходы к задаче деконволюции. Эти подходы включают нерекурсивный и рекурсивный методы фильтрации в плоскости изображения, прямые матричные методы и методы максимальной энтропии и максимального правдоподобия.

Метод согласованной деконволюции, который возник из исследований комплексных нулей в частотной плоскости, является в основном одномерным методом, к которому можно так же широко обращаться, как и к методу мультипликативной деконволюции.

Одним из наиболее важных практических методов деконволюции является метод слепой деконволюции. Отметим, что все методы обработки спекл-изображений можно рассматривать как частные случаи слепой деконволюции.

Кроме известных традиционных приложений деконволюции существуют и различные ее экзотические применения. Одно из наиболее замечательных таких применений - восстановление методом слепой деконволюции записей голосов знаменитых певцов на старых граммофонных пластинках.

Интеграл свертки представляется выражением

(1)

где h(x) - функция, задающая искажение; f(x) - функция, которую необходимо восстановить.
Согласно теореме о свертке фурье-образ величины (1) равен

(2)

где F(u) - функция, связанная с функцией f(x) двумерным преобразованием Фурье; H(u) - фурье-образ оптической передаточной функции.

Идеализированная задача конечной деконволюции такова: заданы функции b(x) и h(x), требуется восстановить функцию f(x) при условии, что все три величины имеют конечную протяженность.

Из соотношения (2) следует, что эту задачу можно решить следующим образом

(3)

Операция деления внутри фигурных скобок в выражении (3) называется простой инверсной фильтрацией. Термин "фильтрация" здесь употребляется по аналогии с классической теорией цепей и современной теорией обработки сигналов. Классический фильтр представляет собой устройство, которое изменяет спектр временных частот сигнала. Спектр B(u) есть функция пространственной частоты.

Оптическая передаточная функция H(u) изменяет спектр пространственных частот B(u) в результате применения указанной выше операции деления.

Поскольку обработанные изображения обычно хранятся в памяти ЭВМ в виде квантованных значений, в технике обработки изображений, как правило, используются цифровые, а не классические аналоговые фильтры. Цифровой фильтр определяется дискретным массивом, вообще говоря, комплексных чисел, который изменяет в процессе некоторой операции обработки спектр пространственных частот. Следовательно, обе функции, h(x) в формуле (1) и H(u) в формуле (2), могут рассматриваться как фильтры (и в большей части приложений они реализуются в цифровом виде). Общепринятая классификация цифровых фильтров возникла в теории обработки сигналов как функций времени, и этой классификацией можно пользоваться в теории обработки одномерных изображений, т. е. сигналов как функций (одной) пространственной переменной. Мы перенесем соответствующую терминологию на двумерный случай. Понятие "отсчета" в теории обработки сигналов переходит в понятие "элемента изображения" в теории обработки изображений. Как отсчеты, так и элементы изображений должны квантоваться по амплитуде до их цифровой обработки. Изображение, к которому должна быть применена операция фильтрации, называется заданным изображением, и о нем говорят как о состоящем из заданных элементов изображения. Элементы профильтрованного изображения называются выходными элементами изображения. В случае нерекурсивного цифрового фильтра каждый выходной элемент изображения представляет собой взвешенную сумму заданных элементов изображения. В случае же рекурсивного цифрового фильтра каждый выходной элемент изображения есть взвешенная сумма заданных элементов изображения и рассчитанных ранее выходных элементов изображения. Все практически реализуемые цифровые фильтры, конечно, описываются массивами конечных размеров (в одномерном случае конечный фильтр часто называют коротким). Цифровой фильтр называется прямым, если он применяется в плоскости изображения, и спектральным - если он применяется в частотной плоскости. Каузальный фильтр является односторонним в том смысле, что его отклик всегда отстает от входного воздействия (это несколько искусственно в двумерном случае, но, конечно, имеет очень важное значение для операций одномерной фильтрации, которые лежат в основе обработки сигналов как функций времени). Каузальные фильтры почти всегда реализуются как прямые. Мультипликативный цифровой фильтр представляет собой спектральный фильтр, в котором каждый выходной отсчет получается как произведение заданного элемента входного сигнала на один элемент массива фильтра.

Если бы все существенные стороны практических задач деконволюции сводились к формуле (3), то все содержание настоящей публикации можно было легко вместить в небольшой статье. Однако в задаче деконволюции встречается очень много практических трудностей. Это объясняется тем, что обрабатываемые данные на практике всегда искажены.

Прежде чем ставить практическую задачу деконволюции, исследуем некоторые свойства согласованности сверток.

В одномерном случае соотношение (2) представляется в виде

(4)

где вещественная переменная u заменена комплексной переменной w. Если функции f(x) и h(x) имеют конечную протяженность, так что протяженность функции b(x) тоже конечна, то их спектры характеризуются множествами нулей в комплексной w -плоскости.

Если заданное множество Zg представить в виде множества вещественных нулей Zgr и нулей, которые могут быть комплексными Zgc, то можно записать

(5)

Это означает, что одномерная задача деконволюции является согласованной только в том случае, если все нули функции H(w) будут также и нулями функции B(w). Следовательно, величины b(x) и h(x) нельзя задавать независимо; заранее должно быть известно, что они удовлетворяют соотношению (1). То же относится и к двумерным сверткам.

Теперь вернемся к периодически продолженному (с перекрыванием) идеальному искаженному изображению imb(x) и к его спектру IMb(x). Последний можно записать в виде

(6)

где (·) - дельта-функция; Fi,m - коэффициенты Фурье истинного изображения f(x), являющиеся также отсчетами функции F(u), которые рассматриваются в теореме отсчетов. Эти отсчеты берутся в точках растра (l/L1, m/L2) в частотной плоскости. Величины Hl,m входящие в выражение (6) - это отсчеты оптической передаточной функции H(u) в тех же самых точках растра:

(7)

где l и m - произвольные целые числа.

Теперь мы можем поставить идеализированную задачу периодической деконволюции: заданы функции imb(x) и h(x), требуется найти функцию f(x) [зная, что f(x) и h(x) - функции конечной протяженности, а imb(x) - периодическая функция].

По заданной функции b(x) можно рассчитать функцию B(u) и сразу же найти, что

(8)

Аналогичным образом вычисляются отсчеты оптической передаточной функции Hl,m. Из выражения (6) видно, что каждое значение Fl,m дается операцией деления , которая всегда может быть выполнена, если значения Hl,m отличны от нуля. Такой простой подход адекватен в случае функций b(x) и h(x), выбранных достаточно независимо, поскольку функция Imb(u) в соответствии с выражением (6) фактически существует только в вышеупомянутых точках растра. Но подобный подход неприемлем в идеализированной задаче в случае конечной свертки, так как тогда B(u) - непрерывная функция переменной u.

Поэтому удивительно, что единственным условием согласованности для периодических сверток оказывается требование, чтобы величины Hl,m могли быть нулевыми только при тех значениях l и m, при которых Bp,l,m =0. Это условие называется условием согласованности периодических сверток. Подчеркнем, что ни одна величина. Hl,m не может быть точно равна нулю при реальном измерении функции h(x), или, что эквивалентно, функции H(u), так что периодические свертки всегда на практике являются согласованными (они, конечно, очень сильно зашумлены, когда большое число величин Hl,m "малы" при значениях l и m, отвечающих существенно отличным от нуля значениям величин Bp,l,m).

Практическая задача деконволюции ставится следующим образом: заданы функции b(x) и h(x), требуется найти функцию f(x), зная, что - усеченный вариант функции записываемого изображения r(x).

Одно из "золотых правил" в задаче реконструкции изображений состоит в том, что следует избегать обработки данных, содержащих какие-либо разрывы непрерывности, из которых наиболее нежелательны обрезания и усечения, поскольку при их наличии почти всегда возникают ложные детали (часто называемые артефактами, особенно в медицинских приложениях). Таким образом, как правило, желательно проводить предварительную обработку изображения , чтобы по возможности полностью компенсировать все имеющиеся в них разрывы и другие устранимые дефекты.

Любой вид предварительной обработки может, конечно, вносить свой шум в добавление к искажению изображения f(x), уже имеющемуся в записываемом изображении r(x). Но если разрывы не устранены, то соответствующие артефакты, как правило, преобладают над любым дополнительным шумом, вносимым предварительной обработкой. "Выровненную" форму изображения обозначим здесь через a(x) и будем называть предварительно обработанным записанным изображением. Хотя в результате проведения предварительной обработки должны изменяться все три величины, редко имеется какой-либо способ оценить, насколько именно, а потому обычно не имеет смысла говорить о различии между изображениями a(x) и r(x). Далее мы будем рассматривать эти два изображения как идентичные, по крайней мере на том кадре (т. е. в той области плоскости изображения), где умещается предварительно обработанный вариант изображения смысла. Поэтому будем считать, что

(9)

Такое предположение не сказывается на общности рассуждений, поскольку шум c(x) включает эффекты произвольного аддитивного искажения, связанного с предварительной обработкой.

Теперь мы введем понятие "восстановимого истинного изображения" . Это оценка изображения f(x), которую можно получить, исходя из изображения .

При любом рациональном подходе к решению практической задачи деконволюции сначала получают предварительно обработанное изображение a(x) из заданного изображения . Затем выбирается подходящая процедура деконволюции для получения на основе h(x) и a(x). Некоторые из этих процедур можно рассматривать как процесс получения модифицированной функции распространения точки , которая связана с предварительно обработанным записанным изображением и восстановимым истинным изображением соотношением

(10)

Коэффициенты Фурье функции удобно обозначить через , а для обозначения спектров функций a(x), c(x), и использовать соответствующие заглавные буквы со "шляпкой" или без нее.

Если есть опасение, что различия между и f(x) сильно увеличатся из-за отсутствия согласованности между функциями a(x) и h(x), взятыми явно конечными, то можно обратиться к формуле

для периодического изображения imb(x) с заменой b на a. Тогда спектр IMb(u) свертки дается выражением (6), но с заменой величин и величинами Fl,m и Hl,m соответственно. Напомним, что на периодические свертки не оказывает влияния несогласованность, которая, как уже говорилось, может искажать свертки величин, имеющих конечные протяженности.

Литература:

1.Бейтс Р., Мак-Доннелл М. Восстановление и реконструкция изображений: Пер. с англ. - М.: Мир, 1989. - 336 с.
2. Дьяконов В. MATLAB. Обработка сигналов и изображений. Специальный справочник. - СПб.: Питер, 2002. - 608 с.

Предварительная обработка изображений

Успешность восстановления изображений сильно зависит от качества предварительной обработки, в результате которой из записанного изображения получают изображение a(x). Мы разделяем предварительную обработку на пять категорий: сглаживание, разбиение на фрагменты, аподизацию, расширение границ и сверхразрешение [1].

Обычно для более полного уменьшения эффектов зашумления проводят сглаживание изображения. Хотя эта процедура часто носит главным образом косметический характер, она может иметь и более важное практическое значение. Напомним, что величина c(x) (см. "Деконволюция", формула (9)) учитывает эффекты, связанные с нелинейностями записи, шумом записи изображения, ошибками в передаче битов, отсутствием некоторой информации (т. е. отсутствием отдельных элементов изображений или целых групп их), насыщением, а также с загрязнением и царапинами, которые искажают фотографии. Сглаживание можно рассматривать как двумерный аналог простейшей обработки сигналов, имеющей целью исключить весь шум, спектральные составляющие которого лежат вне полосы временных частот, соответствующей сигналу, передаваемому рассматриваемым каналом связи. Большинство видов помех, перечисленных выше, можно считать помехами с независимыми отсчетами, тогда как характерные детали изображений обычно коррелированны в пределах нескольких соседних элементов изображения. Иначе говоря, спектр пространственных частот шума существенно шире, чем спектр изображения, и в этом случае весьма эффективна пространственная фильтрация изображения , оставляющая только те спектральные составляющие шума c(x), которые разрешены в той же степени, что и деталь в истинном изображении.

Опыт показывает, что точность восстановленного изображения в значительно большей степени определяется уровнем зашумленности, остающимся в изображении после предварительной обработки, нежели фактически используемым методом деконволюции.

Методы деконволюции прямо применимы только в случае пространственно-инвариантной функции распространения точки (ФРТ).

Нарушение условия пространственной инвариантности меняет характер задачи деконволюции, существенно увеличивая вычислительную сложность и стоимость расчетов даже при использовании методов, пригодных в случае пространственно-зависимых ФРТ. Во многих практических ситуациях такое нарушение связано по большей части не с какими-либо факторами принципиального значения, а с геометрическими искажениями, вносимыми в процессе записи (такие искажения часто вызываются, например, линзами в устройствах, формирующих изображение). Поэтому мы будем рассматривать коррекцию геометрических искажений одновременно со сглаживанием. Для компенсации геометрических искажений, приводящей к практически пространственно-инвариантной ФРТ, можно использовать методы коррекции геометрических искажений. Приведем пример. Предположим, что некоторая сцена фотографируется с вращающегося летательного аппарата, в котором камера жестко закреплена. Плоскость, в которой лежит фотопленка камеры, будет плоскостью изображения. Зная геометрические соотношения между рассматриваемой сценой и летательным аппаратом, мы можем рассчитать положение осевой точки (точки пересечения оси вращения с плоскостью изображения). Даже если камера хорошо сфокусирована, записанное изображение искажается пространственно-зависимой ФРТ, которая в каждой точке изображения с вращательным смазом представляется дугой окружности с центром в данной осевой точке. Угловая протяженность этой дуги пропорциональна произведению времени экспозиции на скорость вращения летательного аппарата. Соответствующая процедура коррекции геометрических искажений должна приводить к преобразованию каждой дуги в отрезок прямой линии постоянной длины. Тогда преобразованная ФРТ становится пространственно-инвариантной, соответствующей линейному смазу. После компенсации смаза с помощью какого-либо наиболее подходящего метода деконволюции исходная геометрия восстанавливается в результате соответствующей коррекции.

В случае пространственно-зависимых ФРТ, не допускающих эффективного применения процедуры коррекции геометрических искажений, существуют два подхода. Можно использовать один из прямых методов. Однако компьютерная реализация этих методов настолько сложна, что они имеют практическую ценность только при обработке изображений небольших размеров (скажем, 128х128 элементов), а также в том случае, когда ФРТ изменяется лишь по одной координате. Второй, обычно более предпочтительный, подход - разбиение записанного изображения на ряд смежных фрагментов одинакового размера. Принимается, что искажение каждого фрагмента связано с формой реальной ФРТ в его центре. Все нарушения этого предположения включаются в полную зашумленность фрагмента изображения, размер которого должен быть настолько мал, чтобы не допустить избыточной зашумленности. В то же время, как показывает наш опыт, размер фрагмента изображения должен быть по крайней мере в четыре - восемь раз больше эффективного размера ФРТ. При всем этом предполагается, что реальная ФРТ изменяется на записанном изображении плавно и медленно (это условие часто выполняется на практике). Таким образом, разбиение на фрагменты дает возможность свести задачу восстановления изображения, описываемого пространственно-зависимой ФРТ, к последовательности практических задач деконволюции. Полное восстановленное изображение получается путем составления мозаики из отдельных восстановленных фрагментов.

Обозначим область плоскости изображения, занимаемую заданным (но сглаженным, как описано выше) записанным изображением, через . Это согласуется с определениями, которые связывают записываемое и фактически записанное изображения r(x) и . Однако записываемое изображение r(x) в большей части практических приложений фактически усекается до вида , чем и объясняется, почему эти два изображения, вообще говоря, различны. Напомним, что - зашумленный вариант изображения b(x). Последнее является фактически интересующим нас изображением, поскольку к нему мы хотели бы применить операцию деконволюции. Поскольку изображение b(x) выходит за пределы вышеуказанного кадра, логично предположить, что то же самое имеет место и для изображения . Заметим, что изображение может все же отличаться от изображения r(x). Поэтому для этого кадра мы введем другой символ Г. Имеет смысл пытаться восстанавливать только те части изображения f(x), которые оказывают влияние на вид изображения b(x) в пределах кадра Г. Это части изображения f(x), которые в исходном состоянии находятся в кадре Г, а также части этого изображения, которые вносятся в результате действия ФРГ в пределы кадра Г извне его. Обозначим через кадр, содержащий сумму этих частей. Кадр может быть построен путем размещения центра кадра ФРТ на внешней границе кадра Г и перемещения ее по этой границе (см. "Деконволюция", формула (1)). Тогда кадр и будет представлять объединение всех точек в кадре Г и всех точек, охватываемых кадром при его прохождении по области Г.

Поскольку части истинного изображения, лежащие вне кадра , полностью теряются, можно предположить, что изображение f(x) лежит в пределах кадра . Поэтому далее будем считать, что

(1)

откуда, естественно, следует равенство

(2)

Так как изображение f(x) существует на кадре , из-за "размывающего" действия ФРТ h(x) оно должно сказываться в пределах большего кадра. Этот больший кадр содержит все части изображения b(x), которые теряются при усечении изображения r(x), а потому мы обозначим его через . Поскольку же есть зашумленный вариант изображения b(x), область идентична области .

Хотя мы знаем о существовании изображения в пределах кадра , оно задается только на кадре Г. Обычно целесообразно провести дальнейшую обработку (кроме сглаживания) для более полной компенсации эффектов усечения, а также несогласованности операции свертки. Итак, нужно, чтобы предварительно обработанное записанное изображение (см. "Деконволюция", формула (9)) удовлетворяло условию

(3)

где через pre{} обозначены операции, описываемые ниже

Усечение изображения имеет столь важное значение с практической точки зрения, что нужно остановиться на его последствиях. Сначала конкретизируем форму кадра Г. Мы будем рассматривать только прямоугольные и круговые кадры, поскольку они чаще встречаются в приложениях. Таким образом, если L1 и L2 есть x и y -протяженности прямоугольного кадра г или если R - радиус кругового кадра Г, следует, что

(4)

или

(5)

где за начало координат взят центр кадра Г. Эти два варианта изображения удобно исследовать раздельно. Из определений

(6)

а также выражения (4) и теоремы о свертке следует, что

(7)

где sinc(u) - фурье-образ rect(x) [2].

Взяв теперь фурье-образ функции (5) и вспомнив первое из двух определений (6), увидим, что

(8)

где - радиальная координата в частотной плоскости и

(9)

причем J1 - функция Бесселя первого рода первого порядка.

Отметим, что sinc(t) - осциллирующая функция, имеющая центральный пик (часто называемый основным лепестком) приблизительно единичной ширины и бесконечную последовательность меньших пиков (иногда называемых боковыми лепестками), каждый из которых имеет эффективную ширину, равную 1/2, и амплитуду, которая уменьшается сравнительно медленно (по закону ). Эти боковые лепестки могут привести к неприемлемым артефактам, если изображение подвергается операции фильтрации без соответствующей предварительной обработки. Хотя это относится в первую очередь к изображению , определенному выражением (4), то же самое справедливо и для изображения, заданного выражением (5). Функция jinc, введенная в формуле (8), аналогична функции sinc. Она фактически эквивалентна двум функциям sinc, входящим в формулу (7). Отметим, что типичная фильтрация может быть описана соотношением

(10)

где - мультипликативный фильтр, предназначенный для получения из изображения изображения , имеющего некоторые желательные характеристики. Боковые лепестки функции jinc и двух функций sinc искажают внешнее преобразование Фурье в формуле (10), часто приводя к очень неприятным пульсациям большой амплитуды в той области плоскости изображения, где велики значения , маскирующие низкоамплитудные детали в фильтрованном изображении.

Поскольку функция тождественно равна нулю вне кадра Г, обычно не удается достичь (в восстановленном изображении) разрешения, лучшего, чем соответствующее ширине главных лепестков функций sinc в формуле (7) или функции jinc в формуле (8). В то же время часто оказывается возможным уменьшить влияние боковых лепестков функций sinc и jinc путем соответствующей предварительной обработки.

Если мы знаем, что более интересные для нас части изображения f(x) лежат ближе к центру кадра Г, то в тех случаях, когда размер последнего существенно больше размера кадра , предварительная обработка может состоять в аподизации. Она заключается в умножении функции на функцию окна m=m(x), которая плавно уменьшается до нуля на внешней границе кадра Г и равна нулю везде вне кадра Г. Вследствие этого область оказывается равной кадру Г. Обращаясь теперь к формуле (3), можно получить, что предварительно обработанное записанное изображение принимает вид

(11)

где - сглаженное изображение, полученное из фактически записанного изображения.

Аподизация неизбежно приводит к потере разрешения, но обычно это "окупается" устранением указанных выше артефактов. В стандартных пособиях приводятся многие функции окна, обеспечивающие удовлетворительный компромисс между уменьшением боковых лепестков и потерей разрешения. Поэтому нам представляется что достаточно продемонстрировать некоторые общие свойства функций окна на примере особенно "гибкой" функции окна, которой не уделялось достаточного внимания в соответствующей литературе.

Поскольку здесь рассматриваются только изображения , описываемые выражениями (4) и (5), по-видимому, не имеет особого смысла изучать функции окна, которые не обладают свойством круговой симметрии или не разделяются на сомножители, зависящие от переменных x и y по отдельности. Поэтому достаточно исследовать одномерные функции окна, например m(x) (через x обозначены переменные x, y или r). В качестве величины L, удобно взять размер (усеченного) фактически записанного изображения в x -направлении. Приняв обозначение M(u)=M=F(m) и предположив, что m - функция, аналитическая на интервале < L /2 (т. е. "непрерывно гладкая", иначе говоря, бесконечно дифференцируемая), мы видим, что интеграл Фурье, определяющий величину M, можно взять по частям и получить следующее выражение:

(12)

где введено обозначение

(13)

Если взять интеграл (12), то появляется возможность анализировать боковые лепестки функции M(u). Чтобы боковые лепестки быстрее уменьшались с возрастанием величины , необходимо обеспечить выполнение условия

(14)

где - положительное целое число.

Однако, как уже отмечалось выше, следует учитывать зависимость между уровнем боковых лепестков и потерями разрешения.

Литература.

1. Бейтс Р., Мак-Доннелл М. Восстановление и реконструкция изображений: Пер. с англ.- М.: Мир, 1989. - 336.
2. Bracewell R.N. The Fourier Transform and its Applications. - N.Y.: McGraw-Hill, 1978.

Расширение границ изображений. Сверхразрешение.

В функции распространения точки могут учитываться линейный смаз, расфокусировка и другие виды искажений.При сильном искажении отношение размеров кадров и может быть весьма малым.

Влияние, оказываемое усечением изображения , можно уменьшать более сложным, чем аподизация, методом экстраполяции с области на кадр . Очевидно, что нечего и пытаться восстанавливать изображение вне области . Единственная цель данного вида предварительной обработки состоит в замене усеченного изображения изображением, которое:

а) свободно от скачкообразных изменений вблизи своей границы;

б) имеет правильный размер, соответствующий восстанавливаемой части истинного изображения (т. е. существует на кадре );

в) содержит всю записанную информацию.

Такой вид предварительной обработки будем называть расширением границ. Эта процедура описывается соотношением

при .

Существуют два способа расширения границ. Простое расширение границ состоит в том, что функцию продолжают с области Г на внешнюю границу кадра вдоль прямых линий, перпендикулярных этой границе . Такая процедура, конечно, выполняется просто, когда области и прямоугольные (что соответствует большей части практических приложений).

Хотя простое расширение границ приводит к менее удовлетворительным результатам в центральной области восстановленного изображения, чем аподизация, оно всегда позволяет извлечь больший объем информации, содержащийся в истинном изображении. Такая процедура эффективна также как метод компенсации усечения изображения . Однако на нее оказывает отрицательное влияние несогласованность операции деконволюции.

В методе расширения границ с перекрыванием несогласованность свертки устраняется тем, что предварительно обработанное изображение считается периодическим. Плоскость изображения следует рассматривать как состоящую из смежных кадров , равных кадру . Будем называть эти кадры основными ячейками. Внутренняя ячейка, представляющая собой кадр, конгруэнтный области , центрирована с каждой основной ячейкой. Под границей ячейки понимается граница между основной и соответствующей внутренней ячейкой. Под предварительно обработанным записанным изображением по-прежнему будем понимать изображение, задаваемое определением

при ,

при .

Таким образом, область следует рассматривать как бесконечно повторяющуюся в плоскости изображения, так что в каждой основной ячейке будет находиться копия изображения . Каждую копию области назовем исходной ячейкой. Поскольку область больше области , изображения на каждой исходной ячейке переходят и в соседние основные ячейки. Эффект перекрывания имеет место только в пределах границ ячеек. Следовательно, изображение совпадает с изображением на каждой внутренней ячейке, но отличается тем, что оно соответствующим образом скорректировано в пределах границы каждой ячейки. Конечно, такая коррекция должна обеспечить периодичность изображения в том смысле, что его функциональное поведение повторяется в окрестностях противоположных точек (которые определяются далее). Значение интенсивности изображения в произвольной точке на внешней границе основной ячейки должно быть зеркальным повторением значения интенсивности изображения в противоположной точке, которая определяется следующим образом. Если ось проходит через основную ячейку, то двумя противоположными точками называются точки пересечения оси с внешней границей основной ячейки.

Отметим, что изображением , полученным в результате расширения границ с перекрыванием в пределах каждой основной ячейки, аппроксимируется периодически продолженное идеальное искаженное изображение. Практически успешность процедуры расширения границ сильно зависит от выполнения следующего требования "гладкости". Изображение в пределах границы произвольной ячейки должно быть по крайней мере столь же гладким, как и изображение в пределах любой внутренней ячейки. Оценку выполнения этого требования вполне допустимо осуществлять визуально. Данным требованием предотвращается появление в изображении ложных составляющих с высокими пространственными частотами, благодаря чему повышается общая устойчивость процесса восстановления изображений. Еще одно преимущество процедуры расширения границ с перекрыванием перед процедурой простого расширения состоит в том, что покрывается менее половины области и допускается меньше произвола. Эта процедура требует минимума экстраполяции для заполнения границы каждой ячейки и поэтому оказывается, вообще говоря, более точной. Если вспомнить основную задачу деконволюции, то методы простого расширения границ и расширения с перекрыванием можно рассматривать как средства сведения практической задачи деконволюции к задачам, соответственно, идеализированной конечной и периодической деконволюции, но с минимизацией вредного влияния искажений, которые неизбежно зашумляют записанные изображения. Очевидно, что процедуру расширения границ с перекрыванием можно реализовать столь же непосредственно, как и простое расширение границ, но практически она часто дает гораздо лучшие результат ы. Тем не менее процедура простого расширения границ тоже нередко применяется, особенно в тех случаях, когда метод с перекрыванием по какой-либо технической причине нельзя использовать.

Потери разрешения в процессе записи, связанные с недостатками устройства, формирующего изображение (например, с аберрациями, которые препятствуют достижению дифракционного предела), можно рассматривать как вклад в полный шум, поскольку они приводят к ухудшению восстановленного изображения, которого можно было бы избежать. Поэтому целесообразно предусматривать процедуру сверхразрешения на этапе предварительной обработки, поскольку эта процедура позволяет иногда воспользоваться преимуществом дуальности частотной плоскости и плоскости изображения для восстановления части потери разрешения без операции деконволюции (последнюю, конечно, можно выполнить позднее, чтобы попытаться в еще большей степени уменьшить потерю разрешения). Отметим в связи с этим также и очень важный психологический фактор. Люди неохотно терпят какие-либо ограничения. Поэтому так естественно попытаться превзойти дифракционный предел!

Предположим, что некоторый спектр записывается на интервале длиной прямой линии с центром в начале частотной плоскости. Из теоремы о проекции следует, что результат преобразования Фурье наблюдаемого спектра представляет собой проекцию с разрешением по пространственной частоте, равным . Очевидно, что данная проекция может иметь сверхразрешение, если известно, как расширить спектр за границы интервала длиной . Поскольку истинное изображение реконструируется по его проекциям, ясно, что нужно достичь сверхразрешения данных и в двумерном случае, если то возможно в одномерном случае.

Для этого необходимо рассмотреть одномерное изображение конечной протяженности и его фурье-образ .

Если - функция конечной протяженности, то - целая функция, а значит, спектр аналитически продолжается на всю частотную плоскость при условии, что функция точно известна в конечном диапазоне значений . Но именно последнее условие часто приводит к неприятностям. Все виды "шума", которые неизбежно искажают результаты измерений, обычно столь сильно ограничивают диапазон "продолжения" пространственных частот, что указанная выше возможность редко оказывается реализуемой практически. Некоторое улучшение может быть достигнуто, если разложить функцию на сферические гармоники и воспользоваться их свойством одновременной ортогональности в конечном и бесконечном диапазонах, но зашумленность снова, как правило, снижает эффективность такой процедуры. Основная причина того, почему изложенный выше подход к сверхразрешению редко оказывается успешным (даже если исходное разрешение сравнительно низкое), состоит в том, что при таком подходе не учитывается условие вещественности и неотрицательности значений изображения. К сожалению, не ясно, как включить эти ограничения в описанную методику аналитического продолжения. Необходимы другие подходы, описанные ниже.

Много говорилось о возможностях в отношении сверхразрешения, предоставляемых методом мак симальной энтропии, который наиболее удобно рассматривать с использованием ДПФ. Мы рассмотрим только одномерный случай. Определим энтропию следующим образом:

. (1)

Неотрицательная вещественная константа обычно полагается равной нулю или единице. Но, по-видимому, нет особых оснований для такого ограничения, если исходить из термодинамических аналогий. Единственный критерий приемлемости метода обработки изображений - это качество получаемых результатов, а потому можно испробовать и другие значения константы . Рассматриваемый метод заключается в продолжении функции , обеспечивающем максимум энтропии . Вся суть этого метода, возможно, в том, что логарифмы в определении (1) исключают получение отрицательных значений для изображения с вещественными значениями. Данный метод частот приводит к впечатляющим результатам, но они очень сильно за висят от некоторых деталей истинного изображения, например спектр может резко измениться, если к изображению добавить небольшой фон. В настоящее время метод максимальной энтропии изучен недостаточно, чтобы о нем можно было судить вполне объективно. Однако это один из немногих методов, при которых в сверхразрешенном изображении автоматически учитывается требование неотрицательности.

Более совершенный метод сверхразрешения - алгоритм Герхберга. Этот алгоритм является устойчивым в большом числе случаев, хотя, конечно, уровень зашумленности ограничивает достижимую степень сверхразрешения. Кроме того, данный алгоритм является гибким и удобным для эффективной реализации в двумерном случае. Несколько близких алгоритмов вытекают из следующего обобщения алгоритма Герхберга.

Пусть и - верхняя и нижняя границы величины , и - соответствующие границы величины

; (2)

 

. (3)

Предположим, что существует такая функция , для которой неравенства (2) и (3) действительно выполняются. Для этого, конечно, нужно лишь, чтобы ограничения были не слишком жесткими. Практика показывает, что при итерационном применении условий (2) и (3) начальная оценка для функции сходится к некоторой функции, скажем , удовлетворяющей условиям (2) и (3). Кроме того, величина уменьшается при сужении указанных ограничений, если это производится постепенно в ходе выполнения итераций. На начальных итерациях важно предусмотреть "запас" при выборе нижних гран





Поделиться с друзьями:


Дата добавления: 2015-10-01; Мы поможем в написании ваших работ!; просмотров: 1289 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Начинать всегда стоит с того, что сеет сомнения. © Борис Стругацкий
==> читать все изречения...

846 - | 682 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.