.


:




:

































 

 

 

 


Unit 5 Arrival of the cosmonauts




Who would fly the first spaceships? There were no known ground rules and these had to be invented by Korolev and the others. It was decided to recruit an initial group of cosmonauts the word cosmonaut was used to differentiate from the existing term of astronaut. The cosmonauts had to be brave, reliable, physically fit, not panic, capable of mental endurance. [6]

Air Force Pilots selected for first manned flight into space, March June 1960 Pavel Belyayev ( ) Valeri Bykovsky ( ) Yuri Gagarin ( ) Viktor Grbtk ( ) Anatoli Kartashov ( ) Yevgeni Khrunov ( ) Vladimir Komarov ( ) Alexei Leonov ( ) Andrian Nikolayev ( ) Pavel Popovich ( ) Georgi Shonin ( ) Boris Volynov ( ) Dmitri Zaikin ( ) Valentin Bondarenko ( ) Valentin Varlamov ( ) Gherman Titov ( ) Grigori Nelyubov ( ) Mars Rafikov ( ) Ivan Anikeyev ( ) Valentin Filateev ( )

 

Yuri Gagarin emerged as the most determined, energetic and ambitious of all the cosmonauts. Yuri Gagarin was born in 1934 near Smolensk, western Russia. In his youth he learned to be a foundryman and went to several industrial schools. He enlisted in the Saratov flying school in his spare time, went to pilot training school, joining the Soviet Air Force as a fighter pilot in 1956.

Because of his short height he always put a cushion on the seat of his MiG fighter. In 1957 he married nursing student, Valentina, at his base and then transferred for arduous service in the Arctic. In 1959, on his own initiative, he wrote to his superiors, applying to join a group of cosmonauts if such a group exists. His application was filed. Gagarin was in time called up, put before a medical board and selected as a cosmonaut on his 26th birthday in March 1960.

So who would fly the first mission? In May the director of the Cosmonaut Training Centre Evgeni Karpov selected six of the 20 as a training group for the first flight (the Americans did something similar, selecting Shepard, Grissom and Glenn from the seven rivals). The six were Kartashov, Varlamov, Gagain, Titov, Nikolayev and Popovich. When Kartashov and Varlamov were invalided out, they were replaced by Nelyubov and Bykovsky. The six were kept waiting even as the final preparations went ahead.

5 April. [Final assembly of the manned spaceship in the huge 20 m high hangar at the cosmodrome.] Korolev and the State Commission were present and all the cosmonauts were at the launch site. They watched the assembly process from Korolevs glass office on the second floor inside the building.

The manned spaceship was carried by crane across the assembly hangar and placed gingerly on the third stage. Fasteners were tightened and connectors joined. The nosecone was put in position. The long grey, white and silver rocket lay on its railcar in the hangar, shining under the arc lamps, pointing towards the pad.

12 April. It was 90 minutes to blastoff. Yuri Gagarin disappeared into the lift. In minutes he had clambered into the Vostok. The hatch was closed. He was on his own.

The booster rose, gathering speed every second. Eyes followed intently upwards. Gradually it bent over in its climbing, heading into the north-east. Four bright light diamonds were all that could be seen of the engine chambers as Vostok disappeared from sight.

Eight minutes. Engine cutoff. The rumble and shaking of the booster subsided abruptly. Silence, total silence, enveloped Vostok. Yuri Gagarin had reached orbit, somewhere over eastern Siberia.

Vostok was 181 km high and its orbit was to reach as high as 327 km. As he gazed through the two portholes of his silent spaceship, Gagarin began to take in the vastness of the planet. Later he described it in his own words. They tell it best:

I saw for the first time the spherical shape of the Earth. You can see its curvature when looking to the horizon. It is unique and beautiful. The day side of the Earth was clearly visible. The coasts of continents, islands, big rivers, the surfaces of water were distinguishable. It is possible to see the remarkable colourful change from the light surface of the Earth to the completely black sky in which one can see the stars. The dividing line is very thin, just a belt of film surrounding the Earths sphere. It is of a delicate blue colour and the transition from the blue to the dark is very gradual and lovely. When I emerged from the shadow of the Earth, the horizon looked different. There was a bright orange strip along it which again passed into a blue hue and once again into a dense black colour.

Vostok was travelling at 8 km/s. It headed across the vast blue of the Pacific. Mariners had taken months and months to cross it but Gagarin would transit in 20 minutes. Down below, tossed on the waves of the ocean, Soviet tracking ships turned their antennae skywards to hear the signals and telemetry of Vostok and the voice of its occupant. By now, news of the flight was out. At 9.59 .m., 6.59 a.m. in Britain and 1.59 a.m. in America, Moscow Radio came on air with the historic announcement:

Today, 12 April 1961, the first cosmic ship named Vostok, with a man on board, was orbited around the Earth from the Soviet Union.

He is an airman, Major Yuri Gagarin....

Exercises

Vocabulary

1. Transcribe the words:

Cosmonaut, fighter, arduous, spherical, curvature, horizon, surfaces, distinguishable, sphere, unique

2. Explain in English and then translate the following words and expressions into Russian:

pilot training school, applying to join a group of cosmonauts, was put before a medical board, cosmodrome, launch site, manned spaceship, launch site

3. Complete the text with the words from the box

system cabin floated horizon task stars sky space voice flight difficulty weightlessness sensation jets

Gagarin accustomed himself to (1). He wrote notes on a pad, and when he finished, it (2) free and lodged under the seat. An hour into the (3) and he was over Cape Horn, South America. Night fell:

I have never forgotten it. The (4) were so clearly visibleblindingly bright and full-bodied. The (5) was blacker than it ever appears on earth, with the real slate blackness of (6).

The automatic guidance (7) locked on. Gagarins next (8) was to test the ability of a man to eat and drink in space. He took away some tubes from their racks, squeezed them and found no (9). Little water droplets floated around the (10). Vostok flashed into daylight and the Sun marched over the eastern (11). Gas (12) hissed in the vacuum. Vostok turned around to prepare for retrofire. All this time Gagarin reported back his every move, his every (13). His (14) came through the mushy crackly short wave.

Translate into Russian

manned flight; manned space flight; manned space vehicle; manned spaceship;

manned orbiting spacecraft; manned space program = manned man-in-space program; manned satellite; manned artificial satellite; manned space exploration

manned program; manned space activities; manned space complex

5. Translate the following text into English:

1959 . . , . 1960 . . 25 .

12 1961 - . . 12 1962 , .

6. Complete each sentence (1-10) with one of the endings (A-J)

1 When a space rocket blasts off, A in orbit around a small star.
2 In 1957 the Soviet Union launched B has people in it who are operating its controls.
3 The planet is probably C a large building in which aircraft are kept.
4 The satellite was called Sputnik, D six manned Soviet orbiting spacecraft, the first of which, launched in April 1961, carried the first man in space.
5 A manned vehicle such as a spacecraft E between Mercury and the earth at an average distance of 108 million km from the sun.
6 A hangar is F the first satellite to orbit the earth.
7 Vostok is a series of G and was awarded many medals and titles, including Hero of the Soviet Union, the nation's highest honour.
8 Unmanned vehicles such as spacecraft H it leaves the ground at the start of its journey.
9 Venus orbits I the Russian word for companion.
10 Yuri Gagarin became an international celebrity, J do not have any people in them and operate automatically or are controlled from a distance.

7. Find proper definitions (second column) for the words and word combinations (first column):

1 reliable A showing or involving great activity or vitality
2 capable B having made a firm decision and being resolved not to change it
3 energetic C an opening of restricted size allowing for passage from one area to another, in particular.
4 ambitious D the ability to continue with an unpleasant or difficult situation, experience, or activity over a long period of time.
5 determined E having the ability, fitness, or quality necessary to do or achieve a specified thing
6 porthole F able to be trusted
7 endurance G having or showing a strong desire and determination to succeed
8 blastoff H the first stage of a rocket or spacecraft, used to give initial acceleration and then jettisoned.
9 hatch I a small window on the outside of a ship or aircraft
10 booster J the launching of a rocket or spacecraft

Speaking

Give a 5-minute presentation on one of the following topics. Use the Memorized Method of Delivery.

1) The Idea of Manned Space Flight

2) Russian Cosmonauts

3) American Cosmonauts

4) European Cosmonauts

 

The Memorized Method of Delivery It involves: ● Writing out the speech word for word; ● Committing it to memory. Advantages: if you have a good memory the memorized method of delivery might seem the best way to present your speech. Disadvantages: when you try to recite from memory, all your energy will be focused on remembering the exact wording and phrasing instead of projecting your message to the audience.

Writing

Do some research and write a 100-200 word history of space flight. Organize your material into a definite structure. Read the text aloud using the correct pronunciation. Look through this list of words and phrases for new ideas on how to begin and end paragraphs in your paper.

Details

as follows

especially

in detail
in particular

including

namely
specifically

to enumerate

to explain

Example and illustration

an illustration of

as an illustration as follows

by way of illustration

e.g. (for example) even

for example

for instance in other words

in particular

namely specifically

such as

the following example thus

Sequence

afterward

at first at the same time

earlier

finally first of all

first

for now for the time being

in conclusion

in the first place in the meantime

in time

in turn last

later on

later meanwhile

next

simultaneously soon

subsequently

the next step then

to begin with

ultimately while
       

Unit 6 Airports

Also known as: Aerodromes, airfields, landing strips

Definition: An area of land that provides for the taking off, landing, and surface maneuvering of aircraft.

Significance: Although airports mark the beginning and ending points of aircraft flights, they are more than mere runways or grass areas for takeoffs and landings. Airports are facilities that provide for the maintenance and servicing of aircraft, serve as exchange points for passengers and cargo, and host the various navigational aids used by pilots to guide an aircraft in flight.

Nature and Use

An airport is defined by the type of aircraft it serves and by where it is located. Airports range in size from large commercial air carrier airports, such as Chicagos OHare International Airport, with more than 30 million passengers per year, to small, privately owned grass landing strips in rural areas with landings of only a few small aircraft each year. In the United States, there are about 15,000 airport landing facilities, only 5,000 of which are open to the public. Even fewer, about 3,000, are served by commercial air carrier service. The other airports are small, general aviation airports in private or public ownership.

Types of Airports

Although airports may be classified in a number of different ways, the broadest categories are general aviation and commercial service airports. General aviation airports are those that do not receive regularly scheduled passenger service but rather have a primary purpose of serving the aviation interests and needs of small or outlying communities. General aviation includes such activities as corporate and business transportation, recreational flying, aircraft instruction and rental, aerial observation, skydiving activities, and other special uses.

Landing Facilities

An airports landing facilities generally consist of a runway or landing strip along with related taxiways and parking areas. A runway is a graded or paved area suitable for the taking off or landing of aircraft. Although most runways in developed nations serving small to large commercial aircraft are paved, there are still many airports that are either grass or dirt strips. These types of landing strips usually serve small piston- or turbine-engine aircraft in rural or undeveloped areas of a country or in developing nations.

Runways

In the early days of aviation, dirt and grass runways were the norm. They tended to be wide open field areas that allowed pilots to take off and land in whichever direction the wind was blowing. This is because aircraft weighed relatively little and needed only a short distance to take off. As aircraft and pavement technology developed and the weight of aircraft increased, the need for longer and stronger runway surfaces emerged. The previously open fields were soon developed into graded areas oriented in the direction of the prevailing winds. These graded areas were then paved. If strong winds occasionally blew from a direction different to that of the paved runway, crosswind runways might also be graded and paved. Aircraft are designed to land into the wind. When winds blow from a different direction than the orientation of the primary runway, some aircraft are unable to handle the side forces of the wind when landing or taking off. A secondary crosswind runway built to accommodate the occasional crosswind is then used instead of the primary runway.

Exercises

Vocabulary

1. Transcribe the words:

Aerodromes, maneuvering, scheduled, aerial, designed, technology, surface although, commercial

2. Match the words from the texts (1-10) with the definitions (A-J):

1 take-off A the way something or someone moves, faces, or is aimed:
2 landing B the amount of physical power with which something moves or hits another thing
3 runway C a wind that blows across the direction that you are moving in
4 cargo D the surface which an aircraft drives on to get to and from the runway
5 taxiways E the action of bringing an aircraft down to the ground after being in the air
6 crosswind F  
the sport of jumping from a plane and falling through the sky before opening a parachute    

 

7 skydiving G a long specially prepared hard surface like a road on which aircraft land and take off
8 force H someone who is travelling in a vehicle, plane, boat etc., but is not driving it or working on it
9 direction I the goods that are being carried in a ship or plane
10 passenger J the time when a plane leaves the ground and begins to fly

3. Match the words from the texts (1-5) with their synonyms (A-E):

1 to provide for A to show up
2 to host B diapason
3 range C to take in
4 purpose D to make arrangements
5 to emerge E objective

4. Explain in English and then translate the following words and expressions into Russian:

airport landing facilities, pavement technology, prevailing winds, private or public ownership, recreational flying, graded or paved area, primary and secondary runway.

5. Find in the texts the English equivalents for the following expressions:

(1) e , (2) , (3) , (4) , (5) - , (6) , (7) - , (8) , (9) , (10) , (11) , (12) , (13) , (14) -, (15) .

6. Complete the text with the words from the box

Airport structure

landside taxiways runways airside
roads terminals ramps parking lots
gates air traffic control on-site hotels customs

 

Airports are divided into (1) and (2) areas. Landside areas include (3), public transportation train stations and access (4). Airside areas include all areas accessible to aircraft, including (5), (6) and (7). Passengers on commercial flights access airside areas through (8), where they can purchase tickets, clear security check, or claim luggage and board aircraft through (9). Due to their high capacity and busy airspace, many international airports have (10) located on site. Airports with international flights have (11) and immigration facilities. Some airport structures include (12) built within or attached to a terminal building.

7. Answer the following questions. Begin your answers with such introductory phrases as: as far as I know; as far as I remember; to my mind; certainly; probably; of course; if I am not mistaken, etc.

1) What do airport facilities provide for?

2) How do airports range in size?

3) What does general aviation include?

4) What do an airports landing facilities consist of?

5) How did the first runways differ from the modern ones?

6) When are some aircraft unable to handle the side forces of the wind?

7) Why is a secondary crosswind runway built to?

8. Translate the following sentences into English:

1. .

2. .
3. .

4. .

5. .
6. : (- ) (, , ..).

Speaking

Conversation Questions: Airplanes. Work with a partner and discuss these questions:

1. How old were you when you went on your first flight? Where did you go?

2. Do you like to travel by airplane?

3. What was the longest flight you have ever taken?

4. What seat do you prefer: window, center or aisle?

5. What are three things you're supposed to do before the flight takes off?

6. What do you like to do during the flight? Does the plane provide anything to do to pass the time?

7. What do you do when you experience turbulence?

8. What should be done with obese people who practically take up two seats?

9. Can you sleep during the flight?

10. Have you ever seen a female pilot? Why do you think most pilots are men?

11. Would you like to be a flight attendant? What are the benefits and /or downfalls?

12. Are most flight attendants female? Is being a flight attendant considered a good job in your country? What do you think are the qualifications?

13. Are planes really safer than cars? (A study shows that flying is 176 times safer than walking, 15 times safer than driving and 300 times safer than a motorbike).

14. What are the advantages of traveling by airplane? What are the disadvantages?

15. Do you know someone who is afraid of flying in an airplane?

16. What questions should you ask when buying airplane tickets?

17. What is a charter flight?

18. What things can you see in an airport?

19. What questions do they ask you when you check-in at the airport?

20. What questions do they ask you when going through immigration and customs at the airport?

How to emphasize words To strengthen your proposal, you can emphasize words that are often contracted and/or add and stress auxiliary verbs (do, does, did). The words in bold are stressed: ● We should not worry about these drawbacks through as the advantages far outweigh the advantages. ● Clients will get to our offices more easily from the airport and we are going to build an underground garage so that there will be more visitor parking. ● In addition, you do find good accommodation around the airport. [Presentations in English, 2012]

Writing

Compose a written report. Give several reasons and mention various counter- arguments of travelling by plane. Use the following t ransitional phrases

Continuation Conclusion Contrast Comparison/Illustration
Again Also Similarly Besides Furthermore In addition Moreover Likewise   As a result Consequently Hence So Therefore Thus Accordingly In short In conclusion Because   But However On the contrary On the other hand Yet Instead Conversely In spite of Still Nor Even though Unfortunately For example That is In other words In fact As a matter of fact  

Unit 7

Forces of flight

Definition: The so-called four forcesgravity, drag, lift, and thrustthat act upon an airplane in straight and-level unaccelerated flight.

Significance: Weight and drag are forces of nature inherent of any object lifted from the ground and moved through the air. The forces of lift and thrust are artificially caused to overcome the forces of weight and drag and enable an airplane to fly.

Humans first attempts to fly, inspired by birds, were limited until humans realized they could not fly like birds. Birds, with their very light weight, great strength, and complex biological design, can use their wings to create both lift and thrust to overcome the natural forces of weight and drag, and to maintain control. Humans, in contrast, had to invent a different approach to meet any success in aviation. The functions of lift and thrust had to be separated. For that, wings and engines were introduced. While wings produce lift, engines produce thrust. Following the first flights made by Orville and Wilbur Wright in December, 1903, the pace of aeronautical development accelerated, and the progress made in overcoming the natural forces in the aviation industry in following decades was dramatic. The understanding of natural forces is thus as important for an airplanes aerodynamics as the creation of artificial forces to counterbalance these natural forces. The engine and propeller combination is designed to produce thrust to overcome drag. The wing is designed to produce lift to overcome weight, or gravity. In unaccelerated, straight-and-level flight, which is coordinated flight at a constant altitude and heading, lift equals weight and thrust equals drag. Nevertheless, lift and weight will not equal thrust and drag. In everyday vocabulary, the upward forces balance the downward forces, and forward forces balance the rearward forces. This statement is true whether or not the contributions due to weight, drag, lift, and thrust are calculated separately. Any inequality between lift and weight will result in the airplane entering a climb or descent. Any inequality between thrust and drag while maintaining straight-and-level flight will result in acceleration or retardation until the two forces become balanced.

However, there are a couple of paradoxes surrounding this information. The first paradox is that in a low-speed, high power climb, the amount of lift is less than the amount of weight. In this situation, thrust is supporting part of the weight. The second paradox is that in a low-power, high speed descent, the amount of lift is again less than the amount of weight. In this situation, the drag is supporting part of the weight. In light aircraft, the amount of lift ordinarily is approximately ten times the amount of drag. The motion of an aircraft through the air depends on the size of these four forces. The weight of an airplane is determined by the size and material used in the airplanes construction and on the payload and fuel that the airplane carries.

The lift and drag are aerodynamical forces that depend on the shape and the size of the aircraft, air conditions, and the flight speed and direction relative to the air velocity. The thrust is determined by the size and type of the propulsion system used in the airplane and on the throttle setting selected during the flight.

The relative wind velocity acting on the airplane contributes a certain amount of force, called total aerodynamic force. This force can be resolved into two components perpendicular to each other along the directions of lift and drag. Lift is the component of aerodynamic force directly perpendicular to the relative wind velocity. Drag is the component of aerodynamic force acting parallel to the relative motion of the wind. Weight is the force directed always downward toward the center of the earth. It is equal to the mass of the airplane multiplied by the acceleration due to the gravity, or the strength of the gravitational field. Thrust is the force produced by the engine and is usually more or less parallel to the long axis of the airplane.

 

Exercises

Vocabulary

1. Transcribe the words:

thrust, artificially, aeronautical, strength, inequality, aerodynamical, perpendicular, axis, propulsion

2. Match the words from the texts (1-10) with the definitions (A-J):

1 gravity A the things carried by a vehicle with scientific instruments and crew
2 drag B the pressure of air that keeps something such as an aircraft up in the air
3 lift C the reaction force that pushes an aircraft forward
4 thrust D flight path
5 force E the force of air that pushes against an aircraft or a vehicle that is moving forward
6 weight F the height of an object or place above the sea
7 altitude G how heavy something is when you measure it
8 heading H the rate at which an object changes position
9 velocity I a force that pulls objects
10 payload J a push or pull t that causes, accelerates, or stops the motion of objects

3. Explain in English and then translate the following words and expressions into Russian:

straight and-level unaccelerated flight, the pace of aeronautical development, to counterbalance these natural forces, the drag is supporting part of the weight

4. Match the words from the texts (1-5) with their synonyms (A-E):

1 inherent A keep
2 retardation B essential
3 maintain C impressive
4 dramatic D deceleration
5 rearward E backward

5. Find in the texts the English equivalents for the following expressions:

(1) , (2) , (3) , (4) , (5) , (6) , (7) , (8) , (9) , (10) , (11) , (12) , (13) , (14) , (15) .

6. Complete the text with the words from the box

Forces

push amount forces motion accelerate Scientists opposite speed
direction zipper engines pull

How do you make something (1)? How do you make it move, change its (2) or (3) or stop? You give it a (4) or a (5). Pushes and pulls are examples of what scientists call (6). When you pull (7) at the on your jacket, you are using force. (8) designing a Moon rocket have to take into account all the forces that will act on it. These include not only the forces generated by its (9) to make it go, but also other forces that affect its (10), such as gravity. Force is described by the (11) of push or pull. It is also described by the direction of the push or pull. When you push on a door, you are using force in one direction. When you pull on that same door, you are using force in the (12) direction.

7. Answer the following questions. Begin your answers with such introductory phrases as: as far as I know; as far as I remember; to my mind; certainly; it's hard to tell; probably; of course; if I am not mistaken, etc.

1) What forces act upon an airplane in straight- and-level unaccelerated flight?

2) How do birds create both lift and thrust to overcome the natural forces of weight and drag?

3) What forces do wings and engines produce?

4) What will any inequality between lift and weight result in?

5) What will any inequality between thrust and drag result in?

6) What is weight of an airplane determined by?

7) What is weight equal to?

8. Translate the following sentences into English:

1. , , .

2. , .

3. .

4. , , .

5. , .

6. , .

7. , .

Speaking

Conversation Questions: Force

Discuss in pairs. How does each of these move?

bird fly grasshopper
helicopter aircraft bee

Use the next words: horizontal, vertical, forwards, backwards, lift, fall, rotate, roll, hover, bank, dive, take-off, climb, withstand, accelerate, decelerate

How to prepare for the Conversation ● Before speaking you should identify what can be accomplished by talking. Every communication act has a practical goal or goals (primary and secondary) ● Find information in newspapers, magazines, books, in-house literature, press releases or on the Internet ● Ask something and then go on to answer it yourself ● You must support your ideas with proof

Writing

Compose a written report about forces acting on the aircraft in flight.





:


: 2018-11-11; !; : 475 |


:

:

, ,
==> ...

1292 - | 1272 -


© 2015-2024 lektsii.org - -

: 0.164 .