Лекции.Орг
 

Категории:


Построение спирали Архимеда: Спираль Архимеда- плоская кривая линия, которую описывает точка, движущаяся равномерно вращающемуся радиусу...


ОБНОВЛЕНИЕ ЗЕМЛИ: Прошло более трех лет с тех пор, как Совет Министров СССР и Центральный Комитет ВКП...


Объективные признаки состава административного правонарушения: являются общественные отношения, урегулированные нормами права и охраняемые...

Стационарное уравнение Шрёдингера

Загрузка...

Формулировка

Общий случай

В квантовой физике вводится комплекснозначная функция , описывающая чистое состояние объекта, которая называется волновой функцией. В наиболее распространеннойкопенгагенской интерпретации эта функция связана с вероятностью обнаружения объекта в одном из чистых состояний (квадрат модуля волновой функции представляет собой плотность вероятности). Поведение гамильтоновой системы в чистом состоянии полностью описывается с помощью волновой функции.

Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.

Пусть волновая функция задана в N-мерном пространстве, тогда в каждой точке с координатами , в определенный момент времени t она будет иметь вид . В таком случае уравнение Шрёдингера запишется в виде:

где , — постоянная Планка; — масса частицы, — внешняя по отношению к частице потенциальная энергия в точке , —оператор Лапласа (или лапласиан), эквивалентен квадрату оператора набла и в n-мерной системе координат имеет вид:

Случай трёхмерного пространства

В трёхмерном случае пси-функция является функцией трёх координат и в декартовой системе координат заменяется выражением

тогда уравнение Шрёдингера примет вид:

где , — постоянная Планка; — масса частицы, — потенциальная энергия в точке

Стационарное уравнение Шрёдингера

Форма уравнения Шрёдингера показывает, что относительно времени его решение должно быть простым, поскольку время входит в это уравнение лишь через первую производную в правой части. Действительно, частное решение для специального случая, когда не является функцией времени, можно записать в виде:

где функция должна удовлетворять уравнению:

которое получается из уравнения Шрёдингера (1) при подстановке в него указанной выше формулы для (2). Заметим, что это уравнение вообще не содержит времени; в связи с этим оно называется стационарным уравнением Шрёдингера (уравнение Шрёдингера, не содержащее времени).

Выражение (2) является лишь частным решением зависящего от времени уравнения Шрёдингера (1), общее решение представляет собой линейную комбинацию всех частных решений вида (2). Зависимость функции от времени проста, но зависимость её от координаты не всегда имеет элементарный вид, так как уравнение (3) при одном выборе вида потенциальной функции совершенно отличается от того же уравнения при другом выборе этой функции. В действительности, уравнение (3) может быть решено аналитически лишь для небольшого числа частных типов функции .

Важное значение имеет интерпретация величины в уравнении (2). Она производится следующим путём: временна́я зависимость функции в уравнении (2) имеетэкспоненциальный характер, причём коэффициент при в показателе экспоненты выбран так, что правая часть уравнения (3) содержит просто постоянный множитель . В левой же части уравнения (3) функция умножается на потенциальную энергию . Следовательно, из соображений размерности вытекает, что величина должна иметь размерностьэнергии. Единственной величиной с размерностью энергии, которая постоянна в механике, является полная (сохраняющаяся) энергия системы; таким образом, можно предполагать, что представляет собой полную энергию. Согласно физической интерпретации уравнения Шрёдингера, действительно является полной энергией частицы при движении, описываемом функцией .


<== предыдущая лекция | следующая лекция ==>
Кедергінің температураға тәуелділігі. | По роду диэлектрика: воздушные, бумажные, слицянные, керамические, электролитические.Ёмкость плоского конденсатора

Дата добавления: 2017-03-18; просмотров: 233 | Нарушение авторских прав


Рекомендуемый контект:


Поиск на сайте:


© 2015-2019 lektsii.org - Контакты - Последнее добавление

Ген: 0.003 с.