Лекции.Орг


Поиск:




Теорема умножения вероятностей событий




Глава 3.

Основные теоремы теории вероятностей и следствия из них

Теорема сложения вероятностей несовместных

Событий

Во второй главе было показано, как можно определить вероятность отдельного случайного события при выполнении определенных условий. Как известно, со случайными событиями можно проводить арифметические действия, главными из которых являются сложение и умножение событий. Теория вероятностей позволяет с помощью своих основных теорем найти вероятность суммы и произведения событий, т.е. определить либо вероятность появления хотя бы одного из рассматриваемых событий, либо вероятность одновременного появления этих событий.

К основным теоремам теории вероятностей относятся:

1. Теорема сложения вероятностей.

2. Теорема умножения вероятностей.

Рассмотрим теорему сложения вероятностей для частного случая. Предположим, что А и В несовместные события, причем будем считать, что вероятности этих событий известны, или могут быть найдены.

Теорема 3.1. Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий, т.е.

(3.1)

Доказательство. Пусть n – общее число всех равновозможных элементарных событий испытания, в котором могут появиться события А или В. Обозначим через тА и тВ число элементарных событий благоприятствующих событиям А и В соответственно. Так как события А и В несовместны, то сумме этих событий А + В благоприятствуют тА + тВ элементарных событий. Поэтому .

Теорема доказана.

Следствие. Вероятность появления одного из нескольких попарно несовместных событий равна сумме вероятностей этих событий, т.е.

(3.2)

Доказательство нетрудно провести, используя метод математической индукции.

Пример 3.1. В ящике находятся 8 белых, 5 черных и 10 красных шаров. Случайным образом выбирается один шар. Какова вероятность того, что этот шар не белый?

Решение. Пусть событие А – выбор черного шара, В – выбор красного шара. Тогда событие С = А + В определяет выбор не белого шара (либо черного, либо красного).

По классической формуле . По теореме 3.1 окончательно получаем .■

Пример 3.2. На фирме имеется две вакантные должности, на занятие которых претендуют трое мужчин и пять женщин. Найти вероятность того, что среди взятых на работу людей будет хотя бы один мужчина, если отбор претендентов производится случайным образом.

Решение. Пусть событие С состоит в том, что среди взятых на работу людей будет хотя бы один мужчина. Очевидно, что событие С произойдет в том случае, когда произойдет одно из следующих двух несовместных событий: А – приняты на работу двое мужчин; В – приняты на работу одна женщина и один мужчина. Таким образом, С = А + В.

Найдем вероятности событий А и В, используя классическую формулу, получим

и .

События А и В – несовместны, следовательно, можно применить теорему 3.1. Получаем . ■

При решении примера 3.2 не было рассмотрено только одно из возможных событий, состоящее в том, что будут приняты на работу две женщины. Обозначим его буквой D и найдем его вероятность. Применяя классическую формулу, получим

.

Нетрудно понять, что события А, В и D образуют полную группу для испытания: выбор двух человек из восьми. Найдем сумму вероятностей этих событий: . Полученный результат можно представить в общем виде.

Теорема 3.2. Сумма вероятностей событий, образующих полную группу, равна 1.

Доказательство. Пусть события А 1, А 2, …, Аn образуют полную группу для некоторого испытания. Тогда по определению в результате этого испытания одно из событий обязательно произойдет, т.е. сумма этих событий является достоверным событием. Вероятность достоверного события равна 1. Следовательно, справедливо равенство:

.

Напомним, что по определению полной группы она состоит из несовместных событий. Тогда по следствию из теоремы 3.1 получаем

.

Теорема доказана.

Следствие. Сумма вероятностей противоположных событий равна 1.

Доказательство непосредственно следует из того, что противоположные события образуют полную группу, следовательно, по теореме 3.2 имеет место формула

(3.3)

где А и Ā – противоположные события.

Следствие доказано.

При решение задач чаще применяется преобразованная формула (3.3), а именно

(3.4)

Пример 3.3. Из девяти кандидатов для выбора на три должности пятеро имеют диплом с отличием. Все имеют одинаковые шансы быть выбранными на эти должности. Определить вероятность того, что среди выбранных будет хотя бы один, имеющий диплом с отличием.

Решение. Пусть событие А означает, что среди выбранных кандидатов хотя бы один имеет диплом с отличием. Очевидно, что событие Ā противоположное А будет состоять в том, что все три выбранных человека не имеют диплома с отличием. Найдем вероятность противоположного события. Для этого применим классическую формулу, получаем

.

По формуле (3.3) найдем вероятность события А:

. ■

Решение примера 3.3 может быть получено и другим, более длинным способом. Нетрудно понять, что событие А есть сумма следующих событий:

А 1 – среди выбранных только один кандидат с дипломом с отличием;

А 2 – среди выбранных два кандидата с дипломом с отличием;

А 3 – среди выбранных три кандидата с дипломом с отличием.

По классической формуле получаем

.

Очевидно, что события А 1, А 2, А 3 – несовместны, следовательно можно применить теорему 3.3. Таким образом

.

Понятно, что первый способ решения намного проще.

В выше рассмотренных теоремах и примерах предполагалась несовместность соответствующих случайных событий. Естественно, может возникнуть задача, в которой требуется найти вероятность появления хотя бы одного из совместных событий. Теорему 3.1 в этом случае применять нельзя. Существует более общий вид теоремы сложения вероятностей, который использует понятие вероятности произведения событий.

 

Теорема умножения вероятностей событий

 

Пусть рассматривается некоторое испытание, в котором возможно появление случайного события А. Если кроме условия испытания никаких ограничений для события А не существует, то вероятность события А называют безусловной вероятностью. Если же задаются некоторые дополнительные условия, то появляется условная вероятность этого события. Чаще всего дополнительные условия связаны с появлением другого случайного события. Итак, при анализе того или иного явления может возникнуть вопрос: влияет ли на возможность появления некоторого события А наступление другого случайного события В и если влияет, то как? Например, наступление В ведет к обязательному наступлению события А или, наоборот, исключает возможность появления события А, а может быть лишь изменяет значение вероятности. Легко понять, что если событие В является благоприятствующим событию А, то при наступлении события В событие А всегда наступает, или если А и В – два несовместных в данном испытании события, то при наступлении события В событие А никогда не будет происходить. Однако это так называемые крайние случаи. Наибольший интерес возникает тогда, когда наступление события В как-то изменяет (увеличивает или уменьшает) вероятность появления события А, не превращая его в достоверное или невозможное при новых условиях событие. Характеристикой такого влияния одного события на другое служит условная вероятность.

Условной вероятностью события А при условии В называется вероятность события А, вычисленная в предположении, что событие В уже произошло.

Аналогично можно определить условную вероятность события В, при условии, что событие А уже произошло.

Пример 3.4. Пусть в урне находятся 6 белых и 8 черных шаров. Из урны последовательно друг за другом случайным образом вынимают два шара, не возвращая их обратно. Найти вероятность того, что второй шар окажется белым, если первым был вынут также белый шар?

Решение. Пусть событие А состоит в том, что второй шар окажется белым, а событие В, что первый шар белый. В задаче требуется найти вероятность события А, при условии, что событие В произошло, т.е. найти . Если событие В произошло, то в урне осталось 13 шаров, из которых 5 белых. Следовательно, вероятность вынуть белый шар из 13, среди которых 5 белых равна .■

Отметим два момента.

Во-первых, для события А может быть найдена не только его условная вероятность, но и так называемая полная вероятность события, т.е. вероятность того, что второй шар окажется белым при выборе первым любого шара. О нахождении такой вероятности речь пойдет в пункте 3.4.

Во-вторых, условие примера может быть так изменено, что цвет первого выбранного шара вообще не будет влиять на вероятность появления события А. Будем считать, что шары после фиксирования их цвета возвращаются обратно в урну. Тогда, очевидно, вероятность события А не зависит от того, какого цвета был выбран первый шар, т.е. от появления (или не появления) события В. В этом случае , т.е. вероятность события А совпадает с условной вероятностью этого события. Сами же события А и В являются независимыми в данном испытании.

Два события А и В называются независимыми, если вероятность появления каждого из них не зависит от того, появилось другое событие или нет. В противном случае, события называются зависимыми.

Из определения следует, что для независимых событий А и В справедливы формулы:

. (3.5)

Получим формулу для нахождения условной вероятности, используя классическое определение. Пусть испытание состоит из n равновозможных элементарных событий. Число событий, благоприятствующих событию А, равно тА; событию ВтВ; произведению событий АВтАВ. Очевидно, что и . Так как событию В благоприятствует тВ исходов, из которых только тА благоприятствуют А, то условная вероятность равна

. Окончательно, получаем

(3.6)

Необходимо обратить внимание на то, что знаменатель в формуле (3.6) отличен от нуля, так как по условию событие В может произойти, т.е. тВ не равно нулю.

Рассуждая аналогично, можно получить формулу для условной вероятности события В: . Но, так как событие АВ ничем не отличается от события ВА и , то условную вероятность события В можно определить по формуле

(3.7)

В наиболее полных, применяющих аксиоматический подход, курсах теории вероятностей формулы (3.6) и (3.7) принимают за определение условной вероятности, а формулы (3.5) – за определение независимых событий.

Из формул (3.6) и (3.7) непосредственно вытекает следующая теорема умножения вероятностей.

Теорема 3.2. Вероятность одновременного появления двух случайных событий равна произведению вероятности одного события на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило, т.е.

(3.8)

Следствие. Вероятность одновременного появления нескольких случайных событий равна произведению вероятности одного события на условные вероятности всех остальных, при этом вероятность каждого последующего события вычисляется в предположении, что все предыдущие события уже появились, т.е.

.

Пример 3.5. В лотереи находятся 20 билетов, из которых 5 выигрышных. Случайным образом выбирают последовательно друг за другом 3 билета без возвращения. Определить вероятность того, что первый, второй и третий билеты будут выигрышными.

Решение. Пусть событие А состоит в том, что первым выберут выигрышный билет, событие В – в том, что второй билет будет выигрышным и, наконец, С – третий билет выигрышный. Очевидно, что .

Условная вероятность события В при условии, что событие А произошло, т.е. из лотереи был выбран один выигрышный билет, равна (всего билетов осталось 19, из них 4 выигрышных).

Условная вероятность события С при условии, что события А и В произошли, т.е. были выбраны два выигрышных билета, равна .

По следствию к теореме 3.2 вероятность произведения равна

. ■

Необходимо отметить, что задача 3.5 может быть решена с помощью классической формулы и формул комбинаторики:

.

Теорема 3.2 верна для любых случайных событий А и В. В частном случае, когда события А и В являются независимыми справедливо следующее утверждение.

Теорема 3.3. Вероятность одновременного появления двух несовместных событий А и В равна произведению вероятностей этих событий, т.е.

(3.9)

Доказательство. События А и В – независимы. По теореме 3.2 с учетом формулы (3.5), получим

.

Теорема доказана.

Итак, теорема 3.3 говорит о том, что вероятность произведения независимых событий находится по формуле (3.9). Верно и обратное утверждение.

Теорема 3.4. Если для двух событий верна формула (3.9), то эти события независимы.

Приведем без доказательства несколько важных свойств, справедливых для независимых событий.

1. Если событие В не зависит от А, то событие А не зависит от В.

2. Если события А и В – независимы, то независимы и события А и .

3. Если два события независимы, то независимы и противоположные им события.

Теорема 3.3 может быть обобщена на конечное число событий. Однако, прежде чем это сделать, необходимо более подробно остановиться на понятии независимости трех и более событий.

Для группы, состоящей из трех и более событий, существует понятие попарной независимости и независимости в совокупности.

События А 1, А 2, …, Аn называются попарно независимыми, если любые два из этих событий независимы.

События А 1, А 2, …, Аn называются независимыми в совокупности ( или просто независимыми), если они попарно независимы и независимы каждое событие и все возможные произведения всех остальных.

Например, три события А 1, А 2, А 3 независимы в совокупности, если независимы следующие события:

А 1 и А 2, А 1 и А 3, А 2 и А 3,

А 1 и А 2 А 3, А 2 и А 1 А 3, А 3 и А 1 А 2.

Теорема 3.5. Если события А 1, А 2, …, Аn независимы в совокупности, то вероятность их одновременного появления вычисляется по формуле:

.

Доказательство. Покажем, что формула верна для трех событий. Если событий больше трех, то справедливость формулы доказывается методом математической индукции.

Итак, покажем, что . По условию теоремы события А 1, А 2, А 3 независимы в совокупности. Следовательно, независимыми являются, например, два события А 1 А 2 и А 3. По формуле (3.9), получим . По условию события А 1 и А 2 также независимы. Применив к первому сомножителю формулу (3.9), окончательно, получим .

Теорема доказана.

Необходимо отметить, что если события попарно независимы, то отсюда не следует, что они будут и независимы в совокупности. И, наоборот, если события независимы в совокупности, то они, очевидно, по определению будут и попарно независимы.

Рассмотрим пример событий попарно независимых, но зависимых в совокупности.

Пример 3.6. Пусть в коробке лежат 4 одинаковых карточки с написанными на них числами:

 
 

 


Случайным образом выбирает одну карточку. Событие А означает, что выбрали карточку, на которой есть число 1, событие В предполагает, что на выбранной карточке есть число 2, событие С – число 3. Выяснить являются ли события А, В и С попарно независимыми или независимыми в совокупности.

Решение. Вероятность каждого из событий А, В и С можно найти по классической формуле (всего карточек 4, на двух из них есть числа 1, 2, 3 соответственно): .

Покажем, что события А, В и С попарно независимы. Выберем любые два события, например, А и В. Вероятность их произведения , так как одновременное появление чисел 1 и 2 может быть только на одной карточке из четырех.

Таким образом, справедливо равенство . По теореме 3.4 события А и В независимы. Аналогично можно показать независимость событий В и С, а также событий А и С. Попарная независимость доказана.

Покажем, что эти события не являются независимыми в совокупности. Вероятность одновременного появления всех трех событий, т.е. появления всех трех чисел, равна , так как только на одной карточке из четырех есть все три числа. Произведение вероятностей событий равно . Таким образом, , следовательно, независимость в совокупности отсутствует. ■

Из теоремы умножения вероятностей и теоремы сложения вероятностей несовместных событий непосредственно следует теорема сложения вероятностей совместных событий.

 





Поделиться с друзьями:


Дата добавления: 2017-03-12; Мы поможем в написании ваших работ!; просмотров: 1635 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Надо любить жизнь больше, чем смысл жизни. © Федор Достоевский
==> читать все изречения...

816 - | 656 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.008 с.