Лекции.Орг


Поиск:




Хроматографический анализ газов, растворенных в трансформаторном масле

Режим регулирования напряжения.

Устройства регулирования напряжения под нагрузкой (РПН) должны работать, как правило, в автоматическом режиме. Допускается дистанционное переключение РПН с пульта управления. На трансформаторах с переключением без возбуждения (ПБВ) правильность выбора коэффициента трансформации должна проверяться два раза в год - перед зимним максимумом и летним минимумом нагрузки.

Аварийные режимы.

При отключении трансформатора защитой, не связанной с его внутренними повреждениями, например, максимальной токовой защитой, трансформатор может быть вновь включен в работу.

При отключении трансформатора защитами от внутренних повреждений (газовой, дифференциальной) этот трансформатор включается в работу только после осмотра, испытаний, анализа масла, анализа газа из газового реле и устранения выявленных дефектов.

При срабатывании газового реле на сигнал производится наружный осмотр трансформатора и отбор газа из газового реле для анализа. Если газ в реле негорючий, при наружном осмотре признаки повреждения не обнаружены, а отключение трансформатора вызывает недоотпуск электроэнергии, трансформатор может быть оставлен в работе до выяснения причин срабатывания газового реле на сигнал. После выяснения этих причин оценивается возможность дальнейшей нормальной эксплуатации трансформатора.

Аварийный вывод трансформатора из работы осуществляется:
при сильном и неравномерном шуме или потрескиваниях внутри бака трансформаторы;
ненормальном и постоянно возрастающем нагреве трансформатора при нагрузке, не превышающей номинальную, и нормальной работе устройств охлаждения;
выбросе масла из расширителя или разрыве диафрагмы выхлопной трубы;
течи масла или уменьшении уровня масла ниже уровня масломерного стекла в расширителе.

 

23 ВОПРОС

Хроматографический анализ газов, растворенных в трансформаторном масле

Необходимость контроля за изменением состава масла в процессе эксплуатации трансформаторов ставит вопрос о выборе такого аналитического метода, который смог бы обеспечить надежное качественное и количественное определение содержащихся в трансформаторном масле соединений. В наибольшей степени этим требованиям отвечает хроматография, представляющая собой комплексный метод, объединивший стадию разделения сложных смесей на отдельные компоненты и стадию их количественного определения. По результатам этих анализов проводится оценка состояния маслонаполненного оборудования.

Хроматографический анализ газов, растворенных в масле, позволяет выявить дефекты трансформатора на ранней стадии их развития, предполагаемый характер дефекта и степень имеющегося повреждения. Состояние трансформатора оценивается сопоставлением полученных при анализе количественных данных с граничными значениями концентрации газов и по скорости роста концентрации газов в масле. Этот анализ для трансформаторов напряжением 110 кВ и выше должен осуществляться не реже 1 раза в 6 месяцев.

Основными газами, характеризующими определенные виды дефектов в трансформаторе, являются: водород Н2, ацетилен С2Н2, этан С2Н6, метан СН4, этилен С2Н4, окись СО и двуокись СО2 углерода.

Водород характеризует дефекты электрического характера (частичные, искровые и дуговые разряды в масле); ацетилен - перегрев активных элементов; этан - термический нагрев масла и твердой изоляции обмоток в диапазоне температур до 300°С; этилен - высокотемпературный нагрев масла и твердой изоляции обмоток выше 300°С; окись и двуокись углерода - перегрев и разряды в твердой изоляции обмоток.

С помощью анализа количества и соотношения этих газов в трансформаторном масле можно обнаружить следующие дефекты в трансформаторе.

1. Перегревы токоведущих частей и элементов конструкции магнитопровода. Основные газы: этилен или ацетилен. Характерные газы: водород, метан и этан. Если дефектом затронута твердая изоляция, заметно возрастают концентрации окиси и двуокиси водорода.

Перегрев токоведущих частей может определяться: выгоранием контактов переключающих устройств; ослаблением крепления электростатического экрана; ослаблением и нагревом контактных соединений отводов обмотки низкого напряжения или шпильки проходного изолятора ввода; лопнувшей пайкой элементов обмотки; замыканием проводников обмотки и другими дефектами.

Перегрев элементов конструкции магнитопровода может определяться: неудовлетворительной изоляцией листов электротехнической стали; нарушением изоляции стяжных шпилек, ярмовых балок с образованием короткозамкнутого контура; общим нагревом и недопустимыми местными нагревами от магнитных полей рассеяния в ярмовых балках, бандажах, прессующих кольцах; неправильным заземлением магнитопровода и другими дефектами.

2. Дефекты твердой изоляции. Эти дефекты могут быть вызваны перегревом изоляции от токоведущих частей и электрическими разрядами в изоляции. При перегреве изоляции от токоведущих частей основными газами являются окись и двуокись углерода, их отношение СО2/СО, как правило, больше 13; характерными газами с малым содержанием являются водород, метан, этилен и этан; ацетилен, как правило, отсутствует.

При разрядах в твердой изоляции основными газами являются ацетилен и водород, а характерными газами любого содержания - метан и этилен. При этом отношение СО2/СО, как правило, меньше 5.

3. Электрические разряды в масле. Это частичные, искровые и дуговые разряды. При частичных разрядах основным газом является водород; характерными газами с малым содержанием - метан и этилен. При искровых и дуговых разрядах основными газами являются водород и ацетилен; характерными газами с любым содержанием - метан и этилен.

После выявления дефекта и его подтверждения не менее чем двумя-тремя последующими измерениями следует планировать вывод трансформатора из работы прежде всего с дефектами группы 2. Чем раньше выведен из работы трансформатор с развивающимся дефектом, тем меньше риск его аварийного повреждения и объем ремонтных работ.

Если по результатам диагностики трансформатор должен быть выведен из работы, но по каким-то объективным причинам это невозможно осуществить, его следует оставить на контроле с учащенным отбором проб масла и хромотографическим анализом газов.

Хроматографический анализ газов, растворенных в масле, позволяет выявлять не только развивающиеся дефекты в трансформаторе, но и общее состояние изоляции его обмоток. Объективным показателем, позволяющим оценить степень износа изоляции обмоток трансформатора, является степень ее полимеризации, снижение которой прямо характеризует глубину физико-химического разрушения (деструкции) изоляции в процессе эксплуатации. Деструкции целлюлозной изоляции сопутствует рост содержания в трансформатором масле окиси и двуокиси углерода и образование фурановых производных. В частности, наличие суммарной концентрации СО и СО2 более 1% может свидетельствовать о деградации целлюлозной изоляции. Образование фурановых производных является прямым следствием старения бумажной изоляции.

Метод жидкостной хроматографии позволяет определять и контролировать требуемое содержание в трансформаторном масле антиокислительных присадок, защищающих масло и другие изоляционные материалы трансформатора от старения.

24 ВОПРОС

При внешнем осмотре могут быть установлены некоторые неисправности трансформатора: поверхностное перекрытие; пробой или разрушение изоляторов, ввод, вздутие бака, образовавшееся вследствие механических усилий внутри трансформатора при его аварии; нарушение прочности швов бака или уплотнений, наличие и течи масла; неисправности работы маслоуказателя, сливного крана и другие дефекты.

Трансформаторы являются наиболее сложным оборудованием систем электроснабжения. Ремонт трансформатора, связанный с его разгерметизацией, выемкой и ремонтом активной части, требует высокой квалификации ремонтного персонала, больших материальных и временных затрат.

Для оценки действительного состояния трансформатора при его техническом обслуживании периодически проводятся профилактические проверки, измерения, испытания, диагностирование. При обнаружении явных или прогнозировании развивающихся дефектов, которые могут привести к отказу трансформатора планируется вывод его в ремонт.

Предварительно проводится ряд организационно-технических мероприятий, обеспечивающих четкое выполнение ремонтных работ: подготовка помещения (площадки), грузоподъемных механизмов, оборудования, инструментов, материалов, запасных частей. Кроме того, составляются ведомость объема работ и смета, которые являются исходными документами для определения трудовых и денежных затрат, сроков ремонта, потребности в материалах.

Любой ремонт трансформатора, связанный с разгерметизацией и выемкой активной части относится к капитальному. В зависимости от состояния активной части различают:
капитальный ремонт без замены обмоток;
капитальный ремонт с частичной или полной заменой обмоток, но без ремонта магнитной системы;
капитальный ремонт с заменой обмоток и частичным или полным ремонтом магнитной системы.
Ремонт трансформаторов мощностью до 6300 кВ*А выполняется, как правило, на специализированных ремонтных предприятиях. Ремонт трансформаторов большей мощности, у которых затраты на транспортировку могут превосходить стоимость ремонта, выполняется непосредственно на подстанциях. В этом случае персонал специализированного ремонтного предприятия выезжает к месту установки трансформатора.

По завершению ремонта активная часть трансформатора промывается сухим трансформаторным маслом. Для старого электрооборудования со сроком службы более 25 лет следует использовать интенсивную промывку активной части, добавляя в промывочное масло специальные присадки, обладающие повышенной растворяющей способностью. Это позволяет интенсифицировать процесс выделения из изоляции и активной части трансформатора воды, механических примесей, продуктов старения масла и твердых изоляционных материалов, что положительно сказывается на характеристиках изоляции.

Твердая изоляция обмоток трансформатора обладает гигроскопичностью. В период выполнения ремонтных работ на открытой активной части изоляция обмоток впитывает влагу из окружающей среды. Поэтому по окончании ремонта возникает вопрос о необходимости сушки изоляции обмоток трансформатора.

Трансформаторы, у которых при ремонте выполнялась полная или частичная замена обмоток, подлежат обязательной сушке. Трансформаторы, прошедшие ремонт без замены обмоток, могут быть включены в работу без сушки изоляции при условиях, что:
характеристики изоляции не выходят за пределы нормированных значений;
продолжительность пребывания активной части на открытом воздухе Тоткр при определенной его влажности не превышает значений, приведенных в табл. 1.

Сушка изоляции осуществляется ее нагреванием в вакуумных шкафах, сухим горячим воздухом в специальных камерах, в собственном баке (без масла).

Ремонт вводов. Основные неисправности вводов (рис.4) следующие: трещины и сколы изоляторов, разрушение изоляторов, некачественная армировка и уплотнение, срыв резьбы контактного зажима при неправильном навинчивании и затягивании гайки. При значительных сколах и трещинах ввод заменяется.

Армирование фарфоровых изоляторов начинают с изготовления зажима из медных или латунных прутков соответствующего диаметра и длины; на концах зажима нарезается резьба по размерам заменяемого. На зажим навинчивают стальной или бронзовый колпак и закрепляют его контргайкой. С внутренней стороны колпак с зажимом скрепляют газосваркой. Сварку производят латунью с применением в качестве флюса буры, предварительно прокаленной в течение 3 ч при 700 °С. Качество сварки должно быть проверено. После сварки зажим лудят гальваническим способом и подвергают вторичному испытанию.

Ремонт поврежденных контактных зажимов. Поврежденную резьбу зажимов отрезают ножовкой заподлицо с плоскостью колпачка. Зажим высверливают на толщину тела колпачка (3-4 мм), после чего его можно свободно вынуть и заменить новым. Новый зажим приваривают от верхней плоскости колпачка

Ремонт пробивного предохранителя. После каждого пробоя предохранителя устанавливают новую слюдяную пластинку толщиной 0,25 мм, а контактные поверхности предохранителя тщательно зачитают от образовавшегося нагара.

Ремонт бака. Сравнительно распространенными случаями повреждения бака, вызывающими его течь, являются нарушения сварных швов и недостаточная плотность прокладки между баком и крышкой. Пустой бак очищают от осадков, грязи, промывают и ополаскивают теплым маслом. Проверяют исправность работы спускного крана. Места течи заваривают, предварительно тщательно очистив место сварки от масла и краски и просушив его постепенным и равномерным нагревом паяльной лампой.

Ремонт прокладок. Пришедшие в негодность уплотняющие прокладки заменяют новыми, изготовленными из маслостойкой резины.

Разметку отверстий в прокладках для прохода болтов делают по крышке или фланцу бака. Отверстия выполняют просечкой. Во избежание перекоса крышки дополнительно прокладывают проволочный ограничитель 5 (рис.5).

Ремонт расширителя. Ремонт расширителя (рис.6) чаше всего сводится к промывке его маслом. Но иногда необходимо очищать внутреннюю поверхность расширите ля от ржавчины, которая может быть обнаружена при разборке трансформатора в виде большого скопления крупинок на плоскости верхнего ярма, под отверстием патрубка расширителя или чаще под отверстием выхлопной трубы.

 

25 ВОПРОС

ЭКСПЛУАТАЦИЯ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ
7.1. ОБСЛУЖИВАНИЕ РАСПРЕДЕЛИТЕЛЬНЫХ УСТРОЙСТВ
Электрические соединения в ЭЭС осуществляются в распределительных устройствах (РУ), включающих в себя схемы соединения; измерительные аппараты; устройства защиты от перенапряжения; аппараты, формирующие информационную сеть; коммутационные аппараты; электрические агрегаты; устройства защиты и автоматики. Схемы соединения РУ зависят от их назначения. Схемы подстанций сравнительно просты, а схемы соединения электростанций и объектов, выполняющих роль узловых пунктов сети ЭЭС, значительно сложнее. На таких объектах используются устройства защиты и автоматики, охватывающие большое число присоединений (дифференциальная защита шин, устройства резервирования отказа выключателей и т. п.).
Эксплуатацию РУ осуществляет персонал. Работы, проводимые в электрических установках, связаны с необходимостью выполнения операций с коммутационными аппаратами и вторичными аппаратами РУ и с подготовкой рабочих мест для ремонтов. В больших РУ эти операции весьма сложны. Учитывая высокие требования к точности оперативных переключений, их выполняет персонал, имеющий специальную подготовку, — оперативный персонал. Поддержание электрических устройств в состоянии, пригодном к эксплуатации, производится ремонтным персоналом.
При эксплуатации РУ обслуживаются:
централизованно выездными оперативными бригадами;
при помощи домашнего дежурства;
постоянным оперативным персоналом.
В первом случае объект работает без персонала. Сигнализация о событиях, требующих вмешательства, поступает на диспетчерский пункт. Для их устранения, а также для подготовки рабочих мест ремонтному персоналу на объект выезжает оперативная бригада. Преимущество такого обслуживания заключается в том, что требуется меньшее число работников. Недостатком является обязательное ожидание, так как требуется время на поездку, а иногда и на освобождение оперативной бригады от предыдущего задания.
Во втором случае персонал, живя поблизости от объекта, находится на пассивном дежурстве и прибывает на него при первой необходимости. Учитывая, что в этом случае, как и в первом, обслуживаются объекты, имеющие простую схему коммутации, для лучшего использования рабочего времени персонал выполняет и простые ремонтные работы. Подобное обслуживание имеет определенные достоинства, но вызывает необходимость расположения жилья поблизости от объекта.
В третьем случае, как правило, обслуживаются сложные РУ, являющиеся узловыми пунктами ЭС и определяющие надежность ее работы.
Надежность работы ЭЭС в значительной мере зависит от надежности РУ, которая обусловлена надежностью действия персонала и характеристиками надежности технических устройств.
Наиболее сложные аварии вызываются при обесточении части или всего РУ. Общая статистика причин обесточения РУ приведена в табл. 7.1.
Таблица 7.1. Причины обесточения РУ и их доля в общем числе аварий

Причины обесточения Их доля, %
Ошибки персонала при выполнении операций в цепях вторичной коммутации, приводящие к неправильной работе релейной защиты  
Включение на забытые заземления  
Неправильное распределение присоединений по системам шин (нарушение баланса мощности)  
Работа на ремонтной схеме в промежутках между ремонтами  
Поломки разъединителей при оперировании ими  
Отказы выключателей присоединений и их защит  

Из табл. 7.1 видно, что в 60% всех случаев аварии происходят из-за неправильных действий персонала, а в 40% —из-за ненадежности технических устройств. Число ошибок персонала зависит от сложности и обозримости технических систем, т. е. чем они сложнее и менее наглядны, тем больше ошибок допускает персонал. Стремление к повышению технической надежности приводит к усложнению схем первичной и, главным образом, вторичной коммутации. В результате этого положительный технический эффект уменьшается из-за роста ошибок оперативного персонала. Поэтому проблема повышения надежности действия персонала требует серьезного внимания.

 

 



<== предыдущая лекция | следующая лекция ==>
Приемы воздействия на аудиторию. | Осаждение из коллоидных растворов
Поделиться с друзьями:


Дата добавления: 2017-02-28; Мы поможем в написании ваших работ!; просмотров: 1642 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Лучшая месть – огромный успех. © Фрэнк Синатра
==> читать все изречения...

772 - | 737 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.