Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Частота события и ее свойства




Математика: Методические рекомендации по выполнению домашней контрольной работы / И.Ю.Коробейникова - Челябинск: ЧОУ ВПО Южно-Уральский институт управления и экономики, 2013.- 40с.

 

 

Ó Издательство ЧОУ ВПО «Южно-Уральский институт управления и экономики», 2013

СОДЕРЖАНИЕ

 

Введение……………………………………………………………………  
Методические рекомендации по выполнению контрольных заданий…  
Задания для домашней контрольной работы……………………………  
Рекомендуемый список литературы……………………………………..  

 

 

 

 

Частное образовательное учреждение высшего профессионального образования

«Южно-Уральский институт управления и экономики»

 

КОНТРОЛЬНАЯ РАБОТА

 

По дисциплине «Теория вероятностей и математическая статистика»

 

Вариант №___

 

Выполнил(а) студент(ка)

___________________________________________________________

(Фамилия, имя, отчество)

___________________________________________________________

(Адрес проживания)

 

Группа ______________________

 

Дата отправления «__» ____201_г.

 

Результат проверки____________________

Проверил преподаватель _______________

Дата проверки________________________

 

 

г.Курган, 2016

ВВЕДЕНИЕ

Цель курса математики состоит в освоение необходимого математического аппарата. Это необходимо для анализа моделирования и решения прикладных задач, с использованием ЭВМ.

Задачи изучения математики как фундаментальной дисциплины состоят в развитии логического и алгоритмического мышления, в выработке умения моделировать реальные процессы.

 

 

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ

Теория вероятностей

Теория вероятностей - раздел математики, изучающий закономерности случайных явлений, наблюдаемых при массовых повторениях испытаний.

Случайные события

Основные понятия.

Под испытанием (опытом) понимается осуществление некоторого комплекса условий. Событием назовем всякий факт, который в результате опыта может произойти или не произойти.

Событие A в опыте называется достоверным, если при повторениях опыта оно всегда происходит.

Событие B в опыте называется невозможным, если при повторениях опыта оно никогда не происходит.

Событие в опыте называется случайным, если при повторениях опыта оно иногда происходит, иногда нет. Случайные события обозначаются А, В, С и т.д.

Два события называются несовместными (совместными), если появление одного из них исключает (не исключает) появление другого. Несколько событий в данном опыте называются несовместными, если они попарно несовместны. Несколько событий в опыте называются совместными, если совместны хотя бы

два из них.

События в опыте называются равновозможными, если условия их появления одинаковы и нет оснований считать какое-либо из них более возможным, чем любое другое.

Полной группой событий называется несколько событий таких, что в результате опыта непременно должно произойти хотя бы одно из них.

Пример 1 Опыт - бросание игральной кости; события:

А1 - выпадение одного очка,

А2 - выпадение двух очков,

А3 - выпадение трех очков,

А4 - выпадение четырех очков,

А5 - выпадение пяти очков,

А6 - выпадение шести очков,

В - выпадение четного числа очков,

С - выпадение более семи очков,

D - выпадение не менее трех очков,

E - выпадение не более шести.

Достоверное событие в данном опыте - E, невозможное событие - С, остальные события - случайные. Первые шесть событий А1, А2, А3, А4, А5, А6 не могут быть выражены через более простые события и их называют элементарными событиями (элементарными исходами). Кроме того, они образуют полную группу несовместных равновозможных событий. Событие В можно выразить через более простые события: либо наступит А2, либо наступит А4, либо А6; следовательно, элементарным событием событие В не является.

Два несовместных события, образующих полную группу, называются противоположными. Противоположные события обозначаются А и (не А).

Пример 2. Опыт - два выстрела по мишени; события: А - ни одного попадания, - хотя бы одно попадание.

Алгебра событий

Суммой или объединением событий А1, А2,..., Аn назовем событие, состоящее в появлении хотя бы одного из этих событий.

А12+...+Аn1ÈА2È...ÈАn.

Произведением или пересечением событий А1, А2,..., Аn назовем событие, состоящее в совместном появлении всех этих событий.

А А2·…·Аn =A1∩A2∩...∩An.

Пример 3. Опыт - два выстрела по мишени. Событие Аi - попадание в мишень при i - м выстреле (i =1;2).

Тогда событие В=А12 - хотя бы одно попадание, событие С= 1+ 2 – хотя бы один промах, событие D= А1·А2 - попадание в цель дважды, Е= А1· 2 + 1·А2 - ровно одно попадание.

Частота события и ее свойства

Если опыт воспроизведен n раз, а событие А произошло m раз, то частотой (относительной частотой) события А назовем Р*(А)= , т.е. отношение числа испытаний, в которых появилось событие А, к числу всех испытаний.

Свойства частоты.

1) 0≤Р*(А)≤ 1, так как 0≤m≤n, следовательно, 0 ≤ ≤ 1

2) частота достоверного события равна 1, так как m=n.

3) частота невозможного события равна 0, так как m=0.

4) Р*(А+В)=Р*(А)+Р*(В)-Р*(А·В).

Условной частотой события В относительно события А, обозначение Р*(В/А), назовем частоту события В при условии, что событие А уже произошло, то есть это число равно отношению числа опытов NAB, в которых произошли события А и В одновременно, к числу опытов NA, в которых появилось событие А, то есть P*(B / A) =

5) Р*(А·В)=Р*(А)·Р*(В/А).

Частота случайного события обладает свойством устойчивости, т.е. при увеличении числа опытов значения частоты события группируются около некоторого числа, характеризующего возможность появления данного события в данном опыте.





Поделиться с друзьями:


Дата добавления: 2017-02-25; Мы поможем в написании ваших работ!; просмотров: 699 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Сложнее всего начать действовать, все остальное зависит только от упорства. © Амелия Эрхарт
==> читать все изречения...

2154 - | 2045 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.009 с.