Лекции.Орг


Поиск:




Категории:

Астрономия
Биология
География
Другие языки
Интернет
Информатика
История
Культура
Литература
Логика
Математика
Медицина
Механика
Охрана труда
Педагогика
Политика
Право
Психология
Религия
Риторика
Социология
Спорт
Строительство
Технология
Транспорт
Физика
Философия
Финансы
Химия
Экология
Экономика
Электроника

 

 

 

 


Кореляційно-регресійний аналіз. Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку)




Кореляційно-регресійний аналіз – це побудова та аналіз економіко-математичної моделі у вигляді рівняння регресії (рівняння кореляційного зв’язку), що виражає залежність результативної ознаки від однієї або кількох ознак-факторів і дає оцінку міри щільності зв’язку.

Статистичні зв'язки описуються в КРА шляхом побудови так зва­ної функції регресії (ФР), що найкращим чином, у смислі деякого критерію, наближає (апроксимує) значення залежної змінної. За та­кий критерій найчастіше вибирають мінімум суми квадратів відхи­лень (неув'язок) результатів спостережень залежної змінної (реалі­зацій) від значень, отриманих розрахунком за рівнянням регресії (РР) для тих самих значень фактора (факторів)**. При цьому вигляд ФР (структура моделі процесу) задається апріорі, на підставі уявлень про природу процесів, що пов'язують залежну та незалежні змінні, або підбирається у процесі обчислень (покрокова та гребенева регресії). В усіх варіантах мінімум суми квадратів неув'язок (звідси назва — метод найменших квадратів, або МНК) досягається шляхом підбору параметрів (коефіцієнтів) PP. Лінійну залежність двох змінних (лінійна однофакторна модель, або ЛОМ) зображають у вигляді:

де Y. та X. — реалізації залежної та незалежної змінної у /-му спосте­реженні; Е. — похибка наближення (неув'язка, залишок).

Розв'язання задачі МНК було розпочато у працях Лежанра (1805), Гаусса (1809) та Маркова (1904). Відтоді теорія МНК суттєво розви­нулася, а завдяки комп'ютерним технологіям стало можливим вияв­ляти та описувати статистичні зв'язки за допомогою широкої гами моделей (лінійних та нелінійних). Кількість коефіцієнтів у лінійних багатофакторних моделях (ЛБМ)

та в нелінійних багатофакторних моделях (НБМ)

Далі залежно від контексту будуть використовуватися синоніми: ознака, варіанта, відгук, результативна величина, залежна змінна.

В КРА використовуються також синоніми цього терміна: незалежна змінна, пре­диктор, регресор.

де k = 0; / = 0; k Ф /, може сягати сотень і навіть тисяч найменувань і розв'язання таких громіздких систем рівнянь без високопродуктивних ЕОМ і ефективних алгоритмів неможливе. Не всі коефіцієнти регре-сійних моделей мають смислове наповнення, тобто модель є формаль­ною, але рівняння моделі можна використовувати для статистичного прогнозування (екстраполяції) — оцінювання очікуваного значення залежної змінної для значень предикторів, що перебувають поза інтер­валом їх спостереження. Коефіцієнти, що стоять при перших степе­нях регресорів в описаних моделях, виражаються через вибіркові коефіцієнти лінійних парних кореляцій між регресорами (познача­ються г, або р), а саме рівняння регресії з їх допомогою може бути записане через кореляційну матрицю гхх (позначається R) і вектор коефіцієнтів парної кореляції між регресорами та залежною змінною

де: (З — вектор бета-коефіцієнтів регресійної моделі.

Коефіцієнт регресії є безрозмірною величиною, що змінюється в межах від -1 до +1. Рівність г = 0 означає відсутність лінійної за­лежності, але не виключає нелінійної. Чим ближче | г | до одиниці, тим "тісніший" лінійний зв'язок між двома випадковими величинами і тим менше СКВ подання кожної з них через лінійну функцію від іншої. Знак г визначає напрямок зв'язку (плюс — прямий, мінус — зворотний). Для ЛММ обчислюється також коефіцієнт множинної (сукупної) кореляції, який ще називається коефіцієнтом детермінації (позначається R2). Він показує, наскільки варіація результативної ве­личини зумовлена варіаціями всіх факторів. Знаючи г та г, можна розрахувати часткові коефіцієнти кореляції rYX(x } між результуючою величиною і кожним з факторів при елімінуванні (виключенні) впливу всіх інших факторів. Інакше кажучи, часткові коефіцієнти кореляції відображають ступінь "чистого" впливу факторної ознаки на резуль­туючу.

Алгоритм КРА має такий вигляд. На першому етапі за даними первісних спостережень (табл. 1) обчислюється симетрична матриця коефіцієнтів парної кореляції, або кореляційна матриця (КМ) (табл. 2).

 

 

 

Таблиця 1

 

Таблиця 2

 

Далі аналізується перший стовпчик (вектор) КМ на предмет вияв­лення незначущих зв'язків з використанням ґ-критерію. Виявлені у такий спосіб другорядні фактори видаляються (викреслюванням відпо­відних рядків і стовпчиків). Після цього стовпчики перетвореної KM, починаючи з другого, аналізуються на мультиколінеарність, тобто на залежність факторів один від одного. Справа в тому, що кореляція факторів збільшує похибки коефіцієнтів регресії, що робить рівнян­ня регресії непридатним для аналізу та прогнозування. За критерій мультиколінеарності беруть виконання таких нерівностей при доборі факторів для подальшого аналізу:

Якщо ці нерівності (або хоч одна з них) не виконуються, то відки­дається той фактор, зв'язок якого з результуючою ознакою найменш щільний.

На другому етапі КРА обчислюється величина R2. Чим ближча вона до 1, тим менша роль неврахованих у моделі факторів і тим більше підстав для висновку, що модель повна й адекватно описує досліджуване явище.

На третьому етапі КРА будується власне функція регресії. Для лінійної моделі застосовується МНК [20]. Коефіцієнти нелінійних регресійних моделей розраховуються за допомогою ітераційного МНК або оптимізаційних методів [18]. Обчислювання коефіцієнтів регресії супроводжується оцінюванням їхньої значущості (статистично не­значущі коефіцієнти відкидаються, модель уточнюється) та диспер­сійним аналізом: оцінкою дисперсії результативної ознаки (повна дис­персія) та оцінкою дисперсії результатів спостережень (залишкова дисперсія). Різниця між цими величинами є часткою повної дисперсії, що пояснюється існуванням регресійних зв'язків між залежною і незалежними змінними. Крім того, обчислюється довірчий інтервал для відхилень розрахованої (емпіричної) кривої від дійсної (теоретич­ної) кривої регресії, що дає змогу побудувати так званий коридор помилок.

На четвертому етапі КРА створюється матриця часткових ко­ефіцієнтів кореляції, за якою можна оцінити ступінь елімінованого впливу факторів на результативну змінну. Як правило, часткові кое­фіцієнти кореляції виявляються меншими за парні. Це пояснюється тим, що з них виключено непряму частку впливу факторів на резуль­тативну змінну, яка зумовлена кореляцією факторів між собою.

Якщо КРА виконано правильно, "залишки" Е. розподіляються за нормальним ЗРЙ, а коефіцієнти рівняння регресії служать кількісни­ми оцінками впливу відповідного фактора на результативну ознаку при незмінності інших. Коефіцієнт детермінації свідчить про повноту впливів.

 

де Sx та SY — стандартні помилки відповідно незалежної та залежної змінних.

 

Коефіцієнти регресії мають різні розмірності (одиниці вимірюван­ня), через що їх неможливо порівнювати, якщо виникло питання про порівняльну "силу" впливів факторів на результат. Щоб надати ко­ефіцієнтам регресії порівняльного вигляду, їх виражають у частках СКВ (так звані стандартизовані, або (З-коефіцієнти):

Крім того, для оцінки відносної зміни результативної змінної через зміну фактора використовують так званий коефіцієнт еластичності (КЕ)

де риска означає усереднення за кількістью спостережень. Коефіцієнт еластичності показує, на скільки відсотків у середньому змінюється результативна змінна при зміні фактора на 1 %.

Слід зазначити, що на практиці використовують й інші характери­стики ступеня щільності статистичних зв'язків. Для малих вибірок застосовують коефіцієнт Фехнера. Для аналізу зв'язків між атрибу­тивними ознаками використовують коефіцієнти кореляції рангів Спірмена і тау-б Кендалла, асоціації Д. Юла, контингенції Пірсона. Коли тип розподілу досліджуваної ознаки невідомий, застосовують критерій серій та критерій інверсій (непараметричне оцінювання) [3] та ін.

.

 





Поделиться с друзьями:


Дата добавления: 2017-02-24; Мы поможем в написании ваших работ!; просмотров: 797 | Нарушение авторских прав


Поиск на сайте:

Лучшие изречения:

Если вы думаете, что на что-то способны, вы правы; если думаете, что у вас ничего не получится - вы тоже правы. © Генри Форд
==> читать все изречения...

2212 - | 2156 -


© 2015-2024 lektsii.org - Контакты - Последнее добавление

Ген: 0.012 с.